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AFIT-ENP-DS-15-S-027
Abstract

Line shapes for the Rb D1 (5 2S1/2 � 5 2P1/2) and D2 (5 2S1/2 � 5 2P3/2) transitions

with 4He and 3He collisions at pressures of 500 - 15,000 Torr and temperatures of 333 -

533 K have been experimentally observed and compared to predictions from the Anderson-

Talman theory. The observed collisionally induced shift rates for 4He are dramatically

higher for the D1 line, 4.60 ± 0.12 MHz/Torr than the D2 line, 0.20 ± 0.14 MHz/Torr. The

asymmetry is somewhat larger for the D1 line and has the same sign as the shifting rate.

The 3He broadening rate for the D2 line is 4% larger than the 4He rate, and 14% higher

for the D1 line, reflecting the higher relative speed. The calculated broadening rates are

systematically larger than the observed rates by 1.1 - 3.2 MHz/Torr and agree within 14%.

The primary focus of the first experiment is to characterize the high pressure line shapes,

focusing on the non-Lorentzian features far from line center. In the far wing, the cross-

section decreases by more than 4 orders of magnitude, with a broad secondary maximum

in the D2 line near 735 nm. The potentials do not require empirical modification to provide

excellent quantitative agreement with the observations. The dipole moment variation and

absorption Boltzmann factor is critical to obtaining strong agreement in the wings.

Temperature dependent shift and broadening rates have been experimentally measured

over a temperature range of 373 K to 723 K and compared to prior predictions from the

Anderson-Talman theory and quantum treatments involving Allard and Baranger coupling.

The shift coefficients exhibit an increase of 20% from 4.36 MHz/Torr to 5.35 MHz/Torr for

the D1 line and an 80% increase from .42 MHz/Torr to .99 MHz/Torr for the D2 line over

the temperature range. Broadening coefficients exhibit a 6% increase from 17.8 MHz/Torr

to 18.9 MHz/Torr and 10% from 18.5 MHz/Torr to 20.5 MHz/Torr for the D1 and D2

lines respectively. The experimental values agree well with prior reported values within

the temperature overlap regions of T < 394 K. The closest theoretical prediction to the
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observed values is the Anderson-Talman approach using spin orbit multi reference (SOCI)

ab initio potentials.

A laser induced fluorescence (LIF) experiment using a hybrid continuous wave (CW)

- pulsed laser excitation pumping scheme was used to measure the temperature dependent

spin-orbit (SO) mixing rates. An experimental apparatus was designed and built allowing

for temperatures up to 723 K to be explored which is 350 K higher than any other

experiment other than Gallagher in 1968. A proposal for a systematic exploration of the

σS O rates was developed with initial observed values of 2.17× 10−16 cm2. The temperature

dependence of the rates were explored resulting in a increase of 6 times the initial value

compared with an increase of 3 time the initial value observed by Gallagher. These initial

observations require further exploration.
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TEMPERATURE DEPENDENT RUBIDIUM-HELIUM LINE SHAPES

AND FINE STRUCTURE MIXING RATES

I. Introduction

Diode Pumped Alkali Lasers (DPALs) are a new type of laser that uses alkali metal

vapor as a gain medium and a buffer gas to control the line shape and kinetics. While these

systems were first demonstrated in 2003 [48] they have just recently been scaled to the

kilowatt power levels in 2012 [18]. To achieve these powers, the design of the gain cell

relied on a set of incomplete line shape and kinetic data. The current focus areas of DPAL

research are the continued power scaling of the systems and basic science research into the

rates involved within the system.

The purpose of this research is to determine the physical parameters of various alkali-

noble gas interactions with a high degree of accuracy. The physical parameters of interest

here include pressure broadening (γ), pressure shift (δ), asymmetry (β0), the quenching

rates (k20, k10), and spin-orbit (SO) mixing rates (k12, k21). Various measurements of these

line shape parameters and the rates associated with these systems have been taken over the

years at low temperatures and usually low pressures. Temperatures of the measurements

range from 320 K [39] to 394 K [68] with pressures of 300 Torr [68]. Various theories

including the semi-classical approach of Anderson Talman [4, 43] and the full quantum

mechanical treatment of Baranger [7] can be used to predict line shape parameters provided

that the interaction potentials, are well known. Ab initio calculations generated potential

energy curves [16] that have been used by theory to predict these rates and line shape

parameters. While these predictions work at lower pressures they start to differ from

experimental results in the line shape wings at higher pressure [61]. Theory can also be used
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to predict the temperature dependence of the spin-orbit mixing rates (k12, k21), broadening,

and shift [15]. The temperature dependence of the shift and broadening rates is a very

sensitive probing tool and is highly dependent on having the correct potential energy curve.

Using the current theoretical work and potentials there is good agreement with the observed

broadening rates, but the values and even the sign of the pressure shift vary greatly [15].

This research will focus on observing asymmetric line shapes at pressures from 500

to 15,000 Torr and examining the temperature dependence of the rates and line shape

parameters up to T = 725 K. This temperature dependence has been shown with a few

data points in various experiments [29, 67] and is predicted by theory. The high pressures

will be used to explore the features in the wings of the line shapes and determine the

asymmetry of the line shape. The line shape and kinetic databases will be expanded using

this experimental data. Using these expanded databases the current potential energy curves

will be adjusted until they match with the experimental broadening, shift, and asymmetry

data. The new energy curves will then be used to try to predict the correct temperature

dependence of the various line shape parameters and rates.

In order to obtain these new rates the following tasks were undertaken. The first

task measured the temperature dependence (T = 300-725 K) of the broadening and shift

rates for the D1 and D2 of the Rb-4He interaction. These parameters were compared with

the predictions from Anderson-Talman theory, Baranger theory, and compared to other

experimental data. The second task was to measure the spin-orbit mixing rates of the

Rb 52P3/2 � 2P1/2 transition for both the 4He and 3He cases as a function temperature

(T=300-725 K). These mixing rates were observed using a new method that combines the

pulsed and continuous wave (CW) type experiments into a single quasi-CW pump method.

The CW pumping method has a better signal-to-noise ratio (SNR), but does not have the

directly measured time basis. The pulsed experiment directly measures the times basis

though typically has a lower signal-to-noise ratio. The quasi-CW pumping method will
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have the increased signal to noise associated with the CW while still allowing for a limited

measurement of the direct time basis. These resultant rates, will be compared to various

theoretical models and prior results.

The experimental results along with the various theoretical calculations from these

experiments will have a two fold effect. The first is the increased population of a

sparse kinetics database for future use in predicting line shape parameters, calculating

potential energy surfaces, and modeling collisional interactions. The second effect these

measurements will have is the advancement of the DPAL program in general through a

greater understanding of how temperature changes affect the system, and will allow for

models that predict and model temperature changes within the system, not just the global

parameters. This will allow for better power scaling and beam quality, two areas where the

DPAL has a great advantage over other laser systems such as solid state lasers.
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II. Background and Literature Review

2.1 Diode Pumped Alkali Laser (DPAL)

The Diode Pumped Alkali Laser (DPAL) is a three level laser system that uses alkali

metal vapor as a gain medium as shown in Figure 2.1. The DPAL works by first exciting

the alkali atom from the ground 2S1/2 state up to the first 2P3/2 state along the D2 transition.

The excited alkali must relax down to the excited 2P1/2 state before it can then emit down

to the ground state along the D1 transition. In order to move populations from the excited

2P3/2 state down to the lower excited 2P1/2 a collisional partner is necessary because there is

not an allowable optical transitions between the two excited states. This collisional partner

is a gas mixture that is pumped into the cell. The gases used range from hydrocarbons

mixtures such as ethane [56] to ethane with helium [84, 86] to pure hydrocarbon free

mixtures such as 4He [79] and 3He [80]. The first demonstration of the DPAL system

in 2003 used a mixture of Rb, and ethane and He for its buffer gas [48].

Figure 2.1: 3 Level DPAL System showing all of the optical transition paths [56]
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The ability of the DPAL system to scale to higher power is what makes it a highly

studied system. A sample scaling of output intensity with pump intensity is shown in

Figure 2.2. The three regions of interest on this curve are the linear slope portion, the

rollover, and the bleached cell limit. The initial linear slope defines the efficiency of

the laser and ideally would be as close to the quantum limit (98.1% for Rb). The slope

efficiency of the laser system can be described as the change in output laser power (PL) as

a function of input pump power (Pp) [85]:

dPL

dPp
=

T
L + T

νL

νP
ηP

dS
dF

(2.1)

In the slope efficiency equation the first factor is the output coupler (T ) and internal losses

(L) of the system. The second factor is the quantum efficiency (ηL) of the system which is

the laser frequency (νL) over the pump frequency (νP). The third factor is the fraction of

the pump that is absorbed by the medium, the pump efficiency (ηP), and is related to the

modal overlap of the system. The final factor, dS
dF , is how efficiently each pump photon is

turned into a laser photon which includes quenching and re-absorption of emitted photons.

Slope efficiencies as high as 81% have been achieved [85].

At the high pump intensity end of the curve is the asymptotic limit of the system or the

bleached cell limit. The incoming pump source has excited all of the available alkali atoms

in the system and there is a bottle neck that has occurred between the 2P3/2 and 2P1/2 states.

The number of alkali excited in the 2P3/2 state are rate limited in their relaxation down to

the 2P1/2 state. With no more available alkali to excite and the limitation on the movement

between the two excited states the power of the system can not go up resulting in a waste of

input power at this limit. This bleaching limit is dependent upon the alkali density within

the cell and the amount of buffer gas in the system. Due to these constraints this upper limit

is most easily raised through either the increase in alkali density which will also modify

the threshold or by increasing the amount of buffer gas in the system to allow for faster

transition between the excited P levels [33, 35].
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Figure 2.2: Computed Intensity in vs Intensity out curve for various pressure of buffer gas

showing the linear increase at the start followed by the rolling over section and the bleached

cell limit for various buffer gas pressures. [33, 35]

In the transition region between these two limits, the curvature depends critically on

the spectral line shape absorption relative to the diode bar bandwidth. A simple view of

this curvature vs the ideal case can be seen in Figure 2.3. This curved region describes how

well matched the line shapes of the system and the pump sources are. In an ideal case the

power would scale linearly until it hits the bleached limit. This does not happen because

of mismatch between these two line shapes [35]. When the pump line shape is either too

narrow or too broad compared to the alkali D2 and D1 transitions pump power is wasted

either in pumping the core where it bleaches the core of the line shape while missing the

wings. The opposite case of being too broad means a lot of the energy is wasted pumping
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Figure 2.3: Ideal depiction of Iout vs Iin curve with three regions: an ideal linear increase in

Iout up to the bleached limit (—), an ideal linear increase in Iout to a higher bleached limit

with the addition of more buffer gas (- · -), a realistic curve with mismatched pump line

shape (- - -), a realistic curve with a more severe pump mismatch (· · ·)

wavelengths that are outside of the transition. Both cases of pump transition mismatch lead

to loss within the system reducing the systems overall efficiency.

The natural line width of the alkali transitions is very small, approximately 36 MHz

and 38 MHz for the D1 and D2 transitions [73, 74] which is much narrower than most pump

sources. Doppler broadening of the system, approximately 500 MHz at room temperature,

is much larger than the natural line width and closer to current pump sources. Adjustment

of the pump source line width is possible, and is currently being worked on by various

groups. A 30 W diode source that has been narrow banded down to only 10 GHz has been

demonstrated by Gourevitch et al. [30], but considering the natural line width of the alkali

transitions this is still not narrow enough without more modification. To correct this the
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transitions of the alkali must be adjusted to allow for matching with these pump sources.

The buffer gases introduced into the system to allow for the spin-orbit mixing also allow

for the adjustment of the line shapes to better match the pump sources available. In order

for a system to be able to fully use the 10 GHz pump source approximately 500 Torr of

helium would be needed to broaden the transition with 5,000 Torr (over 6 atmospheres) for

a less narrowed 100 GHz pump source.

The gases added into the system not only broaden the transition and allow for spin-

orbit relaxation, the gas also effects the absorption cross-section and related the saturation

intensity (Isat) of the system. The saturation intensity is the pumping intensity at which the

small signal gain of the laser is reduced by half. Isat is calculated as:

Isat =
hν20

σ
Γ20 (2.2)

with the cross-section being related to the broadened line shape, g(λ) via:

σ20 =
gu

gl

λ2

8π
Aulg(λ) (2.3)

where

h = Plank’s constant

ν20 = D2 transition frequency

Γ20 = 2P3/2 natural line width

gu = 2P3/2 degeneracy

gl = 2P1/2 degeneracy

λ = transition wavelength

Aul = 2P3/2 lifetime

Early DPAL systems typically used a hydrocarbon gas such as ethane as a spin-orbit

relaxation gas [81, 84, 86]. The reason for this early use of hydrocarbons is their ability

to create very high mixing rates. The mixing rate is the defined as the collisional cross-

section, σ, times the thermally averaged velocity v̄. This high mixing rate effectively moves
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the population from the upper excited state to the lower leading to the population inversion

needed to operate the laser. These heavy hydrocarbons also tended to quench the system

though, which is where a collision between the alkali and the buffer gas leads to a non-

radiative transition down to the ground level. When this happens the energy used to excited

the alkali is wasted by being turned into heat leading to a less efficient laser due to the

wasted energy. The hydrocarbon mixtures also demonstrated a tendency to deposit carbon

soot on the windows of the cell. The carbon soot comes from hydrocarbons reacting with

alkali metals at high temperatures and pumping intensities creating an alkali hydride [79].

Due to these problems associated with the hydrocarbons Lawrence Livermore National

Laboratory (LLNL) in 2007 created the first hydrocarbon-free rubidium laser [79]. Since

then many of the recent works have focused on using hydrocarbon free systems that use

helium or the other noble gases for spin-orbit relaxation. Details are discussed in the line

shape section 2.2 and the kinetics sections 2.3.

A few of the useful qualities of the alkali metals that make them ideal for a robust

field system include ease of handling, low quantities of alkali metals needed for operation,

and a small quantum defect. Both the ease of handling and the needed quantity of alkali

are logistical issues, but are still important considerations for fielded systems. The small

quantum defect is a physical property of the alkalies that is exploited for the laser creation.

Alkali metal, once it has been inserted into the laser system, is closed off from the user.

The metal does not get used up in the process of running an alkali laser meaning more does

not need to be put in or taken out regularly. The DPAL also does not take large quantities of

alkali to run due to the nature of the metal vapor gain medium which typically operates with

a number density on the order of 1013 cm−3. In a laboratory laser demonstration milligrams

of alkali metal can be sufficient to run the system for months. These two items combine to

cut down on logistical problems.
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The small quantum defect, or the energy spacing between the pump level and the

lasing level is very small for the alkali metals. A small energy gap between the two levels

means that there is less energy wasted as heat when the excited alkali collides and loses

energy to go the top of the lasing level. All of alkalies show this small gap, with the

heavier alkalies having slightly larger differences. The various energy levels for rubidium

and cesium can be seen in Figure 2.4. These small energy gaps mean that the quantum

efficiency of the system can reach up to 99% for K, 98% for Rb, and 95% for Cs.

2.2 Lineshapes

Much work has been done through the years on the line-shapes of excited transitions

of the alkali metals including those done by Romalis [67] and Rotondaro [68]. The three

areas of interest in these line shapes typically include the pressure broadening, γ, pressure

shift δ, and the asymmetry, β0 of the line. The pressure broadening of the line, γ, is

typically described as the full-width half-maximum (FWHM) and changes as a function

of temperature. The pressure shift, δ, describes the changing of the center frequency of

the peak of the line shape. When there is no pressure, the peak of the line shape is at the

fundamental frequency of the transition. The asymmetry, β0, of the line shape describes

how quickly one side falls off compared to the other. These three parameters are based off

of fitting the core of line shape with a asymmetrically slanted Lorentz line shape given by:

I(ν) = IL(ν) + IA(ν) (2.4)

IL(ν) = 2
( c
w

)
e−nαocos(nβ0)

nα1

(nα1)2 + (2πc
w ν − nβ1)2

(2.5)

IA(ν) = 2
( c
w

)
e−nαo sin(nβ0)

nα1( 2πc
w ν − nβ1)

(nα1)2 + ( 2πc
w ν − nβ1)2

(2.6)

In the above equations (c) is the speed of light, (n) is the number density, and (w) is the

angular frequency of the transition. The variables α1, β0, and β1 correspond to broadening,
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(a) Cesium Energy Levels

(b) Rubidium Energy Levels

Figure 2.4: Energy level diagrams for cesium and rubidium

shift, and asymmetry respectively with further derivations shown in Section 2.4.2. A

representation of all of these can be seen in figure 2.6 with the fundamental values of

rubidium being shown in Tables tables 2.1 to 2.6. Also of interest here is not just how

pressure affects the line shape parameters, but also how these values vary with temperature.
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There are various methods of determining these line shape parameters which will be

described in more detail.

The number density of alkali in the system is based on the vapor pressure at the surface

of the alkali pool. The relationship between temperature and pressure is given by the

equations below for 87Rb for temperatures below melting (solid phase) and temperature

above melting point (liquid phase) respectively [73, 74]:

log10(Pv) = −94.04826 −
1961.258

T
− 0.03771687 · T + 42.57526 · log10(T ) (2.7)

log10(Pv) = 15.88253 −
4529.635

T
− 0.00058663 · T − 2.99138 · log10(T ) (2.8)

The vapor pressure is given in Torr with the temperature (T) given in K. Using the ideal gas

law the vapor pressure is converted into a number density. A combined 85Rb/87Rb number

density curve based on natural occurring relative abundances is shown in Figure 2.5. As

seen with the log y-axis the number density increases rapidly for increasing temperature

and in fact doubles every approximately 7.8 K. At the melting temperature of 312.5 K

there is already a number density of 5 × 1010 cm−3.

Figure 2.5: Combined Rb number density curves as a function of temperature [74]. The

blue line represents the Rb density before melting point, shown as (- - -), with the red line

representing the Rb density after the melting point.

12



Table 2.1: 85Rb Physical Properties [73]

Atomic Number Z 37

Relative Natural Abundance η(85Rb) 72.17(2)% [52]

Nuclear Lifetime τn (stable) [52]

Atomic Mass m 84.911 789 732(14) amu [20]

Density at 250C ρm 1.53 g/cm3 [52]

Melting Point TM 39.30 ◦C [52]

Boiling Point TB 688 ◦C [52]

Nuclear Spin I 5/2

Table 2.2: 87Rb Physical Properties [74]

Atomic Number Z 37

Relative Natural Abundance η(87Rb) 27.83(2)% [52]

Nuclear Lifetime τn 4.88 x 1010 yr [52]

Atomic Mass m 86.909 180 520(15) amu [20]

Density at 250C ρm 1.53 g/cm3 [52]

Melting Point TM 39.30 ◦C [52]

Boiling Point TB 688 ◦C [52]

Nuclear Spin I 3/2
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Table 2.3: 85Rb D2 Transition Optical Properties [73]

Frequency w0 2π·384.230 406 373(14) THz [8, 82]

Transition Energy ~w0 1.589 049 139(38) eV

Wavelength (Vacuum) λvac 780.241 368 271(27) nm

Wavelength (Air) λair 780.033 489(23) nm

Wave Number (Vacuum) kL/2π 12 816.546 784 96(45) cm−1

Lifetime τ 26.2348(77) ns [17, 32, 72, 77]

Natural Line Width (FWHM) Γ 2π·6.0666(18) MHz

Table 2.4: 85Rb D1 Transition Optical Properties [73]

Frequency w0 2π·377.107 385 690(46) THz [6, 8]

Transition Energy ~w0 1.559 590 695(38) eV

Wavelength (Vacuum) λvac 794.979 014 933(96) nm

Wavelength (Air) λair 794.767 282(24) nm

Wave Number (Vacuum) kL/2π 12 578.948 390 0(15) cm−1

Lifetime τ 27.679(27) ns [32, 72, 77]

Natural Line Width (FWHM) Γ 2π·5.7500(56) MHz
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Table 2.5: 87Rb D2 Transition Optical Properties [74]

Frequency w0 2π·384.230 484 468 5(62) THz [82]

Transition Energy ~w0 1.589 049 462(38) eV

Wavelength (Vacuum) λvac 780.241 209 686(13) nm

Wavelength (Air) λair 780.033 330(23) nm

Wave Number (Vacuum) kL/2π 12 816.549 389 93(21) cm−1

Lifetime τ 26.2348(77) ns [17, 32, 72, 77]

Natural Line Width (FWHM) Γ 2π·6.0666(18) MHz

Table 2.6: 87Rb D1 Transition Optical Properties [74]

Frequency w0 2π·377.107 463 380(11) THz [8]

Transition Energy ~w0 1.559 591 016(38) eV

Wavelength (Vacuum) λvac 794.978 851 156(23) nm

Wavelength (Air) λair 794.767 119(24) nm

Wave Number (Vacuum) kL/2π 12 578.950 981 47(37) cm−1

Lifetime τ 27.679(27) ns [32, 72, 77]

Natural Line Width (FWHM) Γ 2π·5.7500(56) MHz
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(a) Shift δ (b) Broadening γ

(c) Asymmetry β0

Figure 2.6: Lineshape Demonstrations: a) shows the exaggerated shifting of the center

wavelength of the line shape profile from a lower to a higher frequency b) shows the

increase of the full-width at half maximum (FWHM) of the line shape c) demonstrates

the asymmetrical nature of the line shape with the higher frequency side dropping off more

rapidly than the lower frequency side
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2.2.1 Laser Absorption.

The laser absorption technique used in the research is similar to the employed by

Rotondaro [68] and Romalis [67]. The experimental setup used is shown in figure 2.7.

Rotondaro used a tunable titanium-sapphire (Ti:sapphs) ring laser split into 3 using a

trifurcated fiber bundle. Using one of those bundles to monitor the incident power of the

laser the other two were used to probe the alkali vapor and reference cell. The reference

cell was filled with alkali at a very low pressure (∼10−6 torr) set at 360 K with the last

fiber being directed through the test cell. The purpose of the reference cell is to provide a

calibration for the wavelength axis. The alkali metals, having been studies extensively for

decades, have very well known transitions. The absorbance profile of the alkali metal is

then determined by the ratio of the transmitted intensity signal to the incident signal using

the Beer-Lambert-Bouguer law, also known as Beer’s law,

I(ν) = I0(ν)e−σnL (2.9)

where I(ν) is the transmitted signal, I0(ν) is the incident signal, n is the number density

Figure 2.7: Rotondaro laser absorption experimental setup [68]
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of absorbers, L is the absorption path length, and σ is the optical absorption cross section

of those absorbers. By scanning the tunable laser’s frequency an absorbance profile can be

built up across the D1 and D2 transitions. This method was then repeated with different

partial pressures of buffer gas in the cell ranging from 0 to 300 Torr while being kept at

394 K. Using data from multiple runs using varying pressures of buffer gas the line shape

parameters can be determined as functions of pressure. Their results, along with others,

can be seen in Table 3.1.

2.2.2 Scanning Monochromator.

The second method for determining line shapes is using a scanning monochrometer

and a broadband light source. In this method a bright broadband light source is sent through

a cell with the alkali metal and buffer gas. The alkali will absorb the light near the D1 and

D2 transitions while allowing the light not near those transitions to pass through. A lens

placed after the exit of the cell is then used to f-match the light to the monochromator. The

f matching lens focuses the light on the entrance slit and is placed at such a distance that

the light entering the monochromator fills the entire grating of the monochromator. The

grating within the monochromator will then defract the light through the exit slit where a

PMT will amplify the signal to be collected by a picoameter.

Using Beer’s Law, Equation 2.9, the baseline intensity is divided out. In this case

since there is no reference channel to determine the baseline a predetermined baseline is

used. To create this baseline, scans of the system are taken when the cell is cold, but the

source intensity is held at its data collection levels, leading to almost no alkali absorption

due to the low alkali number density in the system. These scans then show the spectral

response of the entire system without the alkali present. Multiple scans can be taken and

then averaged to account for variations in light output and noise which are then averaged

together and fit with a polynomial. Before the signals are ratioed the baseline is scaled to
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fit the wings of the absorption profile. From there the log of the ratio of the two signals is

taken resulting in the absorbance. An example experimental setup shown in figure 2.8.

Figure 2.8: Experimental setup for the scanning monochromator method. There is a white

light source that travels through the alkali cell and is f-matched before going into the

monochromator. Various addition items record the pressure, temperature, and output signal

with a Krypton pen lamp providing absolute wavelength correction.

2.2.3 Polarization Scattering.

The final method is a polarized scattering method [10, 11, 50]. This method typically

uses an intense pump beam of polarized light to selectively pump part of the transition.

By pumping the isotropic material with the polarized light the transition follows the

∆M selection rule for polarized light of ±1 depending on either right or left-handed

circularization. When this happens the degenerate sublevels become depleted leaving a

non-isotropic material. In this now anisotropic material the incoming probe beam sees a

birefringent material that can be measured using a set of crosses linear polarizers.

In this type of experiment a broadband light source is sent through a notch filter to

pick the D1 line and then through a circular polarizer. The light is then sent through the
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alkali cell filled with buffer gas. Inside the cell the alkali vapor becomes weakly polarized

through the absorption of the circularly polarized light. The intensity of the light that passes

through at this point is the baseline. As an radio frequency (rf) field is applied to the cell

and scanned the alkali-metal will become depolarized leading to a decrease in intensity of

the light that passes through. This creates the absorption profile of the transition [10].

2.2.4 Line Shape Temperature Dependence.

Temperature dependent line shape data in the literature is very limited in scope.

Most experiments that look at pressure broadening and shifting only use one temperature.

As shown later in Table 3.1 experimental temperatures range from 310-394 K with a

complete listing of various measured values. Among the various measurements there is

good agreement on the pressure broadening rate of around 18 MHz/Torr for the D1 line

and a slightly higher 20 MHz/Torr for the D2 line. The reported shift values though do not

share such agreement. Measured values of the shift for the D1 line is in general agree in

the 4.5-5.0 MHz/Torr range. The D2 shift though varies greatly with measured values from

-.47 MHz/Torr [60] to 2.2 MHz/Torr [12]. This range in values even has a sign change

denoting the direction of the center wavelength is going in opposite directions.

The two best pieces of temperature dependence for the line shape data come from

experimental data from Romalis [67], theoretical computations done for his dissertation by

R. Loper [53], and the Anderson-Talman approach used by Hager [34] and Blank [14, 15].

The Romalis data shows a linear increase in both the FWHM of the measured line shapes

with temperature, as well as an increase in the shift of the central wavelength. The data

was taken at three temperatures for 4He, 333, 353, and 373 K with 3He being taken at

353 K [67]. In order to build the curve the assumption was made that only the average

velocity of the collision was important allowing for the calculation of a higher temperature

proportionally equal to the decrease in mass of the helium. By making this assumption they

were able to extend their temperature range from the actually measured difference of 40K
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to an effective range of 130 K. This data did not actually measure the pressure broadening

and shifting rates as a function of temperature, rather they demonstrated that at a single

pressure that the temperature affects the line shape in this way, though an extrapolation

from this is not difficult to infer the rates also will be temperature dependent. The data can

be seen in figure 2.9.

Figure 2.9: Romalis data showing FWHM and shift as a function of temperature at a

constant pressure. D1 shift (+) and broadening (0) with D2 shift (x) and broadening (�).

The three lower temperature data points are 4He with the last being a calculated temperature

using the 3He data. [67]

Loper’s research is focused on the theoretical calculations of the line shapes using

their interaction potentials [53]. Using the potential energy curves and the Baranger model,

he was able to calculate broadening and shifting rates for three temperatures for a host

of alkali-noble gas partners. The values are for the D1 and the two branches of the D2

branch which are averaged together to give the D2 coefficients. The relevant results are

summarized in Table 2.7.

The final approach to determining the temperature dependence of the shift and

broadening rates uses the semi-classical Anderson-Talman approach, discussed later in

Section 2.4. Using ab initio calculated potential energy surfaces, the same ones used later
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Table 2.7: Loper theoretical γ and δ calculations using ab initio potential energy curves [53]

Temp (K) D1 (MHz/Torr) D2a (MHz/Torr) D2b (MHz/Torr)

γ δ γ δ γ δ

250 30.47 6.79 17.49 -2.35 34.59 5.17

350 23.7 6.09 14.36 -1.98 28.25 4.33

450 19.41 5.47 12.38 -1.74 24.28 3.78

by Loper, Blank was able to predict the temperature dependence of the broadening and

shift rates. The predicted rates are shown in Chapter 4.3 when compared to experimental

results.

2.3 DPAL Kinetics

The DPAL kinetics describes the rates of various reactions within the system. The two

points of concern are the spin-orbit (SO) mixing rate, also known as relaxation, and the

quenching rates. The SO mixing rate determines how fast the alkali transitions between the

excited 2P3/2 and 2P1/2 states. The quenching rates correspond to the rate of transitions

between 2P3/2 →
2S1/2 and 2P1/2 →

2S1/2 through non-radiative means which removes

population that could otherwise contribute to the laser system. In a DPAL, the goal is

to have the highest possible SO rate while minimizing the quenching rate.

2.3.1 Population Mechanisms and Rate Equations.

The following equations describe how the population of the system can move between

the ground state 2S1/2 , N0, the first 2P1/2 , and second 2P3/2 , N1,2 excited states

respectively [21].

[
Rb

(
5 2S1/2

)]
+ hν20

R
−→

[
Rb

(
5 2P3/2

)]
, optical pumping (2.10a)
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[
Rb

(
5 2P3/2

)] ξ2A20
−−−−→

[
Rb

(
5 2S1/2

)]
+ hν20, spontaneous emission (2.10b)[

Rb
(
5 2P1/2

)] ξ1A10
−−−−→

[
Rb

(
5 2S1/2

)]
+ hν10, spontaneous emissoin (2.10c)[

Rb
(
5 2P3/2

)]
+ M

k20
−−→

[
Rb

(
5 2S1/2

)]
+ M, quenching (2.10d)[

Rb
(
5 2P1/2

)]
+ M

k10
−−→

[
Rb

(
5 2S1/2

)]
+ M, quenching (2.10e)[

Rb
(
5 2P3/2

)]
+ M

k21
�
k12

[
Rb

(
5 2P1/2

)]
+ M, spin-orbit mixing (2.10f)

These 6 equations describe all of the various methods that population can move from

one level to the next with the following variables:

[Rb] = alkali metal concentration in given level

h = Plank’s Constant

R = pump rate

ν20,10 = frequency of transition between 2P3/2 →
2S1/2 and 2P1/2 →

2S1/2

A20,10 = spontaneous emission rates from 2P3/2 →
2S1/2 and 2P1/2 →

2S1/2

k20,10 = quenching rates from 2P3/2 →
2S1/2 and 2P1/2 →

2S1/2

k21,12 = spin-orbit mixing rates between 2P3/2 and 2P1/2 states

ξ1,2 = radiation trapping, discussed in Section 2.3.3

The spin-orbit mixing rates going from 2P3/2 →
2P1/2 (k21)and 2P3/2 ←

2P1/2 (k12) are

related to each other using detailed balance. Detailed balance states that the forward and

backward rates are related to each other by: the number of degenerate states in each level,

the energy difference between the two levels, and the temperature of the system.

k12 =
g2

g1
e−

∆E21
kBT k21 = ρk21 = 1.25 · k21 (2.11)

Once the thermally averaged rates k are determined the cross-section σ can then be

calculated assuming

k = v̄σ (2.12)
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with the average speed v̄ of the collisions being defined as

v̄ =

√
8kBT
πµ

(2.13)

The average speed is based upon Boltzmann’s constant (kb), the temperature (T), and the

reduced mass of the collision partners (µ). The average velocity for Rb-He at 373 K is

1.437 × 105 cm/s.

2.3.2 Pulsed Experiment.

For a pulsed experiment where the pump is only on for a very short amount of time

the coupled rate equations for the system can be written as [70]:

 Ṅ2

Ṅ1

 =

 − (ξ2A20 + γ20 + γ21) R + ργ21

γ21 − (ξ1A10 + γ10 + ργ21)


 N2

N1

 (2.14)

The pump rate, R, in equation 2.14 can be turned into an initial condition if the pulse

duration is short compared to the timescales of other decay mechanisms. When the

condition of a short pulse is met equation and the pump rate is turned to an initial

condition the time dependent solution for I(t) comes from solving for the eigenvalues of

Equation 2.14 and is given as:

I(t) = C(e−λ−t − e−λ+t) (2.15)

Solving for the eigenvalues of equation 2.14 we get solutions:

λ± = −
1
2

[
ξ1A10 + ξ2A20 + γ10 + γ20 + γ21 (1 + ρ)

]
±

1
2

([
(ξ1A10 + γ10) − (ξ2A20 + γ10)

]2
+ (1 + ρ)2 γ2

21

+ 2γ21
[
(ξ1A10 + γ10) (ρ − 1) + (ξ2A20 + γ10) (1 − ρ)

])1/2

(2.16)

The trapping coefficients, ξ1,2, relate to how many times the photon is absorbed and re-

emitted before reaching the edge of the cell. The γ21, γ20, γ10 variables are defined as
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k21[M], k20[M], and k10[M] respectively where [M] is the number density of buffer gas.

Our initial conditions coefficient, C, is dependent upon the pressure of the buffer gas within

the system as is described by the equation:

C =
γ21( [

(ξ1A10 + γ10) − (ξ2A20 + γ10)
]2

+ (1 + ρ)2 γ2
21

+ 2γ21
[
(ξ1A10 + γ10) (ρ − 1) + (ξ2A20 + γ10) (1 − ρ)

] )1/2

(2.17)

When ρ is approximately equal to 1, ie. the rate going up is equal to the rate going down,

equations 2.16 and 2.17 can be reduced to:

λ± = −
1
2

[
ξ1A10 + ξ2A20 + γ10 + γ20 + 2γ21

]
±

1
2

√[
(ξ1A10 − ξ2A20) + (γ10 − γ20)

]2
+ 4γ2

21

(2.18)

C =
γ21√[

(ξ1A10 − ξ2A20) + (γ10 − γ20)
]2

+ 4γ2
21

(2.19)

The above equations can be simplified further if there is no trapping in the system.

With no trapping, or very little trapping, ξ become equal to 1. Another assumption that can

be made to simplify the equations and is approximately true is that the quenching rates, γ20

and γ10, are approximately equal. Using these assumptions Equations 2.18 and 2.19 reduce

down to:

λ± = −
1
2

[
A10 + A20 + 2γ10 + 2γ21

]
±

1
2

√
[(A10 − A20) +]2 + 4γ2

21
(2.20)

C =
γ21√

[(A10 − A20)]2 + 4γ2
21

(2.21)

Using Equation 2.15 to fit the data, a sample of which can be seen in Figure 2.10, the

values for C and the eigenvalues can be determined. Then using equations 2.20 and 2.21

k21, k20, and k10 can be calculated. Taking the difference of the eigenvalues will provide k21

and k10 − k20 while the addition of the eigenvalues will provide k10 + k20. Solving these two

equations simultaneously will provide the final values with Equation 2.21 being used as a

independent check.
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Figure 2.10: Experimental data from a pulse SO mixing experiment showing the decay

curves of Cs-He 7P1/2-6S1/2 transition. The buffer gas pressures in torr a) 2.0 b) 1.2 c) 0.6

d) 0.4 e) 0.2 [21]

2.3.3 Radiation Trapping.

Radiation trapping is the process by which a captured photon may be absorbed and

emitted multiple times before reaching the edge of the gain cell. Two main factors

determine the magnitude of the radiation trapping in a system. The first, volume of the

cell. The larger the distance that the photon must travel to reach the edge of the cell, the

greater the probability of collision leading to absorption. The second factor is the alkali

density within the cell. High alkali density increases the probability that an emitted photon

will be reabsorbed before reaching the edge. Radiation trapping therefore increases the

timescale of the decay curve. Therefore in order to ascertain the correct rates, the trapping

must be calculated and accounted for.

At times the experiment may actually encourage this radiation trapping to extend the

decay lifetime of the signal. By extending the decay time it becomes easier to deconvolve

the initial pulse of the laser if that pulse is on the order of the decay time. While this does

allow for longer pulse lasers to be used for this type of experiment that uncertainty inserted
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into the calculations by this random process introduces more errors. To avoid the necessity

of extending the decay times a pulsed laser source with a much shorter pulse duration than

the decay time can be used.

The following discussion of the proposed experiments avoid the problem of radiation

trapping all together, which is the best option if available. In order to completely avoid the

trapping the alkali density within the cell is kept low via the use of an alkali metal dispenser.

A ∼100 pico-second laser will also be used in order to avoid the necessity of extending the

decay time and therefore removing the requirement to do radiation trapping.

2.3.4 Continuous Wave (CW) Experiment.

For the CW experiment, the major difference from the pulsed experiment is how the

rate equations change. The equations that describe population movement stay the same.

In the pulsed experiment rate equations were solved by finding the eigenvalues of coupled

rate equations. In the CW experiment the system has reached a steady state and the change

in the population of N1 and N2 is equal to zero, allowing for a direct solution of the rates.

The relative populations of each level when pumping the 2P3/2 are given as [64]:[
N1

N2

]
PumpD2

=

(
ID1

ID2

) (
d2

d1

)
=

k12[M]
A1 + (k10 + k21)[M]

(2.22)

and when pumping the 2P1/2 state:[
N2

N1

]
PumpD2

=

(
ID2

ID1

) (
d1

d2

)
=

k21[M]
A2 + (k20 + k12)[M]

(2.23)

where ID1 and ID2 are the intensities recorded from the side fluorescence using the band pass

filters. The detectivity of each detector is given by d1 for detector one and d2 for detector

two.

In this type of experiment the intensity of both the D1 and D2 transitions are monitored

as shown in the experimental setup of figure 2.11. Some of the data from the experiment

by Pitz can also be seen in figure 2.11. The cross-section in this experiment as well as the

previously described pulsed experiments assumes that the cross-section σ is independent
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of temperature. This may make a difference in the rates if the average speed is not the only

parameter that depends upon the temperature of the system.

Figure 2.11: Experimental setup for CW SO-mixing from Pitz [64]

Figure 2.12: Sample experimental data from CW SO-mixing experiment [64]

2.3.5 Temperature Dependent Mixing Rates.

The spin-orbit mixing rates have now been discussed along with the various methods

used to determine them. The temperature dependence of these rates, as with the line shape

parameters is the main focus of this research. To that end the best information available with

respect to the rates come from Gearba [29] at the Air Force Academy for the experimental

28



side, and from the theoretical side Lewis [51]. The data from Gearba is compared with the

earlier works by Gallagher [28], Krause [45], and Beahn [9] in Figure 2.13.

Figure 2.13: Temperature dependence of spin-orbit mixing rates from Gearba [29] as solid

circles, Krause [45] as the square, Beahn [9] as the diamond, and Gallagher [28] as the

solid line with 15% error bounds.

The work done by Lewis for his computational modeling done for his dissertation can

be seen compared to Krause and Beahn in Table 2.8.

2.4 Anderson Tallman Line Broadening Theory

2.4.1 Potential Energy Curves.

A potential energy curve (PEC) describes the interaction forces between two non-

interacting atoms or molecules. The potential between the two atoms can be considered

to be zero at infinity and has some structure as the two object move closer together due

to the forces involved. In 1924 J. E. Jones published in the Royal Society of London

his mathematical fitting to the interaction potentials of experimental argon [40]. In his

explanation of the potential energy curve between two argon atoms he developed what
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Table 2.8: Lewis [51] computational calculations of SO rates with comparisons to

experiment.

Q(2P3/2 ←
2P1/2) RbHe Temp (K)

Krause [45] 0.27 ± .027 340.15

Predicted SO 0.10

Predicted SO + Coriolis 0.39

Beahn [9] 0.36 ± 0.036 373.15

Predicted SO 0.13

Predicted SO + Coriolis 0.45

became known as the Lennard-Jones or 12-6 potential. He expressed the potential as:

V = 4ε
[(
σ

r

)12
−

(
σ

r

)6
]

(2.24)

where ε is the well depth, σ is the van der Waals radius of the particle, and r is the spacing

between the two particles. In equation 2.24 the term raised to the twelfth power is the

repulsive force between the particles and the term raised to the sixth is the attraction.

David Weeks and L. Blank have created ab initio potential energy curves for the

cesium-helium [15]. A sample of one of their PECs is shown in figure 2.14

2.4.2 Broadening and Shift.

In 1956 P. Anderson-J. Talman published their Unified Theory of pressure broaden-

ing [4]. In the Anderson-Talman theory the line shape of a transition is created by taking

the Fourier transform of the auto-correlation function for a single emitter. Kielopf then

gives a modified expression for the line shape given as [43]:

I(ν) = 2
(c
v̄

) ∞∫
0

e−nα(u)cos
[
(2πcν/v̄) − nβ(u)

]
du (2.25)
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Figure 2.14: Sample potential energy curve for the cesium-helium interaction created by

Weeks and Blank for use in testing line-broadening theories [15]

The variables for the line shape include:

ν = emitter frequency in wavenumbers (cm−1)

u = correlation distance = wτ

v̄ =
√

8kT
πµ

= average relative speed of collision pair

µ = reduced mass of collision pair

τ = correlation time

c = speed of light

The real part, α of the accumulated phase difference:

α(u) =

∞∫
−∞

dx0

∞∫
0

2πb (1 − cos[θ(x0, b, u)]) db (2.26)

with the imaginary portion, β,

β(u) =

∞∫
−∞

dx0

∞∫
0

2πb (sin[θ(x0, b, u)]) db (2.27)

The function θ(x0, b, u) is the accumulated phase shift on collision:

θ(x0, b, u) = 2π
(c
v̄

) u∫
0

∆V
( √

(x0 + u′)2 + b2
)

du′ (2.28)

Then assuming a large correlation distance α and β can be written as linear functions

α(u) = α0 + α1u (2.29)
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β(u) = β0 + β1u (2.30)

Combining these equations results in the full intensity profile which is the full form of

equation 2.4 expanded to include the non-linear term that dominates in the wings

I(ν) = IL(ν) + IA(ν) + INL(ν) (2.31)

IL(ν) is given by equation 2.5 with IA(ν) defined by equation 2.6 and the final term:

INL(ν) = 2
( c
w

) u∫
0

[
e−nα(u′)cos

(
2πc
w

u′ν − nβ(u′)
)
− e−n(α0+α1u;)cos

(
2πc
w

u′ν − n(β0 + β1u′)
)]

du′

(2.32)
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III. High-Pressure Lineshape

3.1 Introduction

The diode-pumped alkali laser (DPAL) was proposed in 2001 as an alternative to high-

power, diode-pumped, solid-state lasers [46, 48]. The radiation from the un-phased diode

laser bars or stacks are absorbed on the D2
2S1/2 � 2P3/2 transition and collisional energy

transfer to the spin-orbit split 2P1/2 state yields lasing on the D1
2P1/2 � 2S1/2 transition in

potassium, rubidium, or cesium vapor.

A rubidium laser pumped by a 1.28 kW diode stack with a 0.35-nm bandwidth has

achieved 145-W average power [88]. More recently, 1 kW Cs laser with closed loop

transverse flow was demonstrated with 48% optical-to-optical efficiency [18]. The fine

structure splitting in Cs is large, and hydrocarbon collision partners are generally required

to prevent bottlenecking. The presence of hydrocarbons can lead to soot and alkali hydride

formation [47]. In contrast, helium is sufficient to induce fine structure mixing in Rb with

the rates required to support high power development [56]. Helium pressures of 10-20

atmospheres are required to avoid bottlenecking on the fine structure mixing and to broaden

the absorption line shapes sufficiently to accept modestly narrowed diode bar radiation.

Characterizing the high pressure Rb-He line shapes is critical to: (1) design the pump

diode spectral band, (2) design the optical resonator, (3) assess the effects of atmospheric

transmission on high power propagation, and (4) evaluate the rates of ionization via far

wing absorption. In this chapter we observe and compare with theory the high-pressure

line shapes for the Rb D1 and D2 lines induced by collisions with 4He and 3He.

The Rb-He gas line shapes near resonance (in the core) have been investigated

experimentally in considerable detail [12, 31, 39, 42, 44, 54, 60, 65, 67, 68, 71, 76, 83].

The broadening and shifting rates for the Rb D1 line induced by collisions with 4He using

modern methods agree to within better than 4% [54, 65, 67, 68, 83]. The agreement for the
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D2 line is poorer, with a 9% variance for the broadening rate and 20% for the shift rate. The

shift rate for the D2 line is small due to the combined effects of two electronic surfaces. The

temperature range where these rates have been determined is modest, 314-394 K, and span

several different studies. Older measurements during the period 1940-1980 exhibit a 30%

variance in broadening rates and disagree on the sign of the shift [12, 31, 39, 42, 60, 71, 76].

The corresponding rates for collisions with 3He were all performed at high pressures, >1

atm, and vary by about 20% [44, 50, 67].

Several computational approaches have also been applied to compute the broadening

and shift rates [14, 15, 43, 53, 69]. However, the results are sensitive to the long

range portion of the interaction potentials. Indeed, the two ab inito potentials [16, 55]

used in our recent study of Cs line shapes [34] both require empirical modification to

adequately describe the observed spectra. Furthermore, different line shape theories applied

to the same interaction potentials do not agree on the sign of the shift for the Rb-He

interaction [15].

In the current work we focus on the high pressure, non-Lorentzian behavior of the

Rb-He D1 and D2 line shapes. For pressures exceeding 1,000 Torr, a significant asymmetry

has been observed in the core of the line, [54, 65, 67] as predicted by several theoretical

calculations [19, 22, 26, 41]. However, the magnitude of the asymmetry is not well

predicted and further refinement of the interaction potential appears necessary [43]. A

blue satellite is observed in the far wing of the Rb D2 line and is most pronounced for

the heavier rare gases [2, 19, 22, 26, 41]. A comparison of the theoretical predictions

for the far wing spectra of Rb-He over a broad range of temperatures has recently been

published [19]. In the recent work, potential surfaces were generated using SA-CASSCF-

MRCI calculations. In this paper we report observations of the absorption spectrum in far

wings of the Rb D2 and D1 lines perturbed by 4He and 3He at pressures as high as 15,000

Torr. We then employ the Anderson-Talman theory, [3, 4] including the effects of dipole
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moment variation, [1] to predict the line shapes. The sensitivity of dipole moment variation

on the wing line shapes is also evaluated. Our longer-term goal is to unify the Rb-He DPAL

kinetics with potential surfaces that are sufficient to predict the temperature dependence of

the fine structure mixing rates and collisional line shape parameters.

3.2 Experiment

Absorption spectra for rubidium vapor in the spectral range 600-875 nm were

observed using a grating monochromator, as shown in Figure 3.1. The broadband visible

emission from an Ealing 100 Watt tungsten lamp, with Oriel 68831 300 W lamp power

supply, was collimated with an f=2.5 cm lens to pass through a Rb sample maintained

in a gas recirculation cell. The transmitted light was focused with another f=2.5 cm, 5

cm diameter lens onto the entrance slit of a McPherson model 209 f=1.33 m (f/#=9.4)

monochromator. With a 500 nm blaze, 1200 gr/mm grating and slits widths of 20.8 µm for

the entrance and 34.7 µm for the exit, the instrumental line shape exhibited a full width at

half maximum spectral resolution of 0.05 nm (24.7 GHz). An Ultraviolet Products krypton

pen lamp was positioned at 17 mm in front of the monochromator entrance slit to provide

dynamic wavelength calibration. Wavelength calibration was stable to within 0.035 nm

from over 6 months of data acquisition.

An uncooled Burle C31034A photomultiplier tube biased at 1,275 V exhibited a dark

signal bias of 4-6 nA with noise fluctuation of 0.04 nA, as monitored on a Keithley model

386 picoammeter with 0.175 integration time. Monochromator scan rates of 0.32 nm/min

required approximately 11 hours to obtain a full spectrum across the range 670-880 nm.

The spectrum is sampled 11 times for each digital step in wavelength of 0.01 nm. The un-

attenuated lamp signal was typically 110-120 nA with noise of 0.25-0.35 nA. The minimum

detectable absorbance:

A = −ln [It(λ)/I0(λ)] (3.1)
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Figure 3.1: Experimental setup for the High-Pressure Lineshape Study

where

It(λ) = transmitted intensity with Rb vapor in the path

Io(λ) = transmitted intensity without Rb vapor in the path

was limited by the detector noise at A= 0.005. The maximum detectable absorbance was

limited by baseline drift and noise at A= 2.1. Absorbance was stable to within 2% over a

13-hour period for a cold cell. Cell window transmission degraded by about 60% over a

6-month period.

A spectral baseline, Io(λ), was obtained by recording the transmitted intensity with

the circulator operated at 296 K (Rb density, n < 1010atom/cm3) and evacuated conditions

to minimize the spectral absorption. A 9th order polynomial fit for the average of several

observed baselines before and after allows interpolation across the weak and narrow D1 and

D2 line positions. This baseline had no theoretical basis and was chosen because it provided

the best fit to the cold scan data. The stability of the observed baselines was affected

primarily by changes in the circulator window transmission. The transmitted signal at 735
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nm with the circulator operating at 513 K varied from 38.5-41.0 nA, or by 6.5% during a

13 hour observation.

A schematic of the gas circulator and gas handling system is provided in Figure 3.2.

The gas bearing turbo machinery circulator provides mass flow rates of up to 1 g/s. In

the current experiments, stagnant, non-flowing circulator conditions were employed. The

Monel 400 walls and stainless steel 316 valves were not degraded throughout the testing

period. The optical path length with Rb vapor is 8.125 cm and accessed through 4 fused

silica windows. Temperatures of 333-533 K were monitored by type K thermocouples and

controlled in four zones with a Watlow controller, to yield rubidium densities of n = 2.5 x

1011 - 6.3 x 1015 atoms/cm3. The windows were kept at 5-10 K hotter than the test cell to

minimize plating. Rubidium density is stable to within 2% over a 13 hour period. However,

there is a periodic variation of temperature, due to the control system response time of 3.5

min, of ∆T = 3 K. This produces a variation in absorbance of up to ∆A = .02 at the highest

temperatures, and is corrected as discussed below.

Approximately 1 g of Alfa Aesar 99.75% purity, natural isotopic abundance rubidium

was loaded into the circulator in a nitrogen purged dry box. This single charge of rubidium

was not depleted or reacted during the 9 months of operation. Linde 99.9999% 4He and

Spectra Gases, 99.9% 3He was introduced through a SAES heated getter and 0.003 µm

filter to remove atmospheric gases, CO, and H2 to <1 ppb. A Varian EX9698996 turbo

pump was used to evacuate the circulator. Pressure was measured with a 15,000 Torr MKS

model 609A manometer and 670 signal conditioner. Line shapes for gas pressures of 500

- 15,000 Torr were observed. Pressure measurements are performed and reported at the

elevated cell temperatures. The pressure transducer is protected behind a stainless steel

valve during the longer spectral scans.
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Figure 3.2: Diagram of the high-pressure Creare Cell used in experiment

3.3 Observed Spectra

The transmitted intensity as a function of monochromator wavelength for several

rubidium densities and 4He pressure of 10,000 Torr is provided in Figure 3.3. The various

spectral features are assigned to the strongly absorbed Rb D1 and D2 lines, the weaker Cs

D2 line at 852.1 nm due to sample impurity, the Kr lamp calibration lines, and for the higher

Rb densities, the vibrational bands of the Rb2 X1Σg+−B1Πu electronic transition. The broad

blue satellite of the Rb D2 line can also been seen in the higher Rb density scans near λ

= 735 nm. The absorbance in the blue satellite is 0.03% of the line center absorbance at

10,000 Torr. The core of the Rb D2 and D1 lines become highly opaque for T > 400 K. The

relative height of the Cs D2 line suggests ∼0.047% Cs in the sample. The potassium lines

near 770 nm and 766 nm are very weak in the current spectra. At T = 333 K, the ratio of
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Rb dimer to atom concentrations is 7× 10−5 and grows dramatically to 4× 10−3 at T = 533

K [59]. Fortunately the Rb2 absorbance is spectrally isolated from the atomic lines.

Figure 3.3: Monochromator spectrum at T=353 - 533 K and 4He pressure of 10,000 Torr.

Spectral features are assigned in the upper banner and the fit residuals for a 9th order

polynomial in regions without spectral structure is provided in the lower panel.

The transmitted intensity of Figure 3.3 is converted to absorbance, A, in Figure 3.4,

using Beer’s Law and the baseline spectrum from the cold scans as described above. The

bottom panel in Figure 3.3 illustrates the residuals associated with the baseline polynomial

fit to the data. In the regions with no atomic or molecular features, the residuals are

unstructured with an average variance of ∆I = 1 × 10−9 A or approximately 2-5%. By

examining the absorbance in the spectral region near the Rb D2 and D1 lines only, several

new features are revealed. A slow saw-tooth cycling of temperature of 3 K (peak to valley)

with a regular period of 3.5 minutes leads to a periodic variance in absorbance of up to

∆A = 0.02. This variance is fully removed by processing the data with the thermocouple

readings, as shown below. The absorbance due to the atmospheric O2 X3Σ− b1Σ(0, 0) band

near 762 nm is rotationally resolved. The absorbance of A=0.02 is consistent with a path
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length of 2 meters, largely within the monochromator. Additional detail from the Kr lamp

is also evident in Figure 3.4.

Figure 3.4: Absorbance spectra corresponding to the data in Figure 3.3. The magnetic

dipole selection rules, Hunds case (b), produces four O2(b1Σ→ X3Σ) absorption branches:

PP and PQ, beginning near 762 nm and extending beyond 770 nm, and the RQ and RR lines

from 762-759 nm.

At lower Rb densities, the core of the line shape is not opaque and the rates for

collisional broadening, shifting and asymmetry may be evaluated. Figures 3.5 and 3.6

illustrates the observed line shapes for both the Rb D2 and D1 lines for 4He and 3He

pressures of 500-15,000 Torr at 343 K. The D1 lines exhibit a significant shift of the center

frequency to the blue. In contrast, the D2 lines exhibit a small blue shift. In all cases,

the widths of the spectral features are 240-290 GHz at the highest pressure, depending on

transition and buffer gas. The areas under these curves are nearly constant, varying by 18%

for D1 and 8% for D2 due to modest changes in alkali density.

The Anderson-Talman theory for the line shape, limited to the low-pressure core of

the line, can be expressed as two terms:
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(a) D1
4He

(b) D2
4He

Figure 3.5: Core line shapes for (a) Rb D1-4He and (b) Rb D2-4He, at pressures from

narrowest to widest of (—) 512 Torr, (–·–) 997 Torr, (- - -) 1,544 Torr, (...) 2,005 Torr,

(—) 3,006 Torr, (–.–) 5,490 Torr, (- - -) 9,988 Torr, (...) 15,039 Torr.
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(a) D1
3He

(b) D2
3He

Figure 3.6: Core line shapes for (a) Rb D1-3He and (b) Rb D2-3He, at pressures from

narrowest to widest of (—) 502 Torr, (–·–) 998 Torr, (- - -) 1,498 Torr, (...) 1,994 Torr,

(—) 3,015 Torr, (–.–) 5,001 Torr, (- - -) 7,500 Torr, (...) 10,062 Torr.
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I(ν) = 2
(c
v̄

)
e−nα0

[
cos(nβ0)(nα1) + sin(nβ0)

(
2πc

v̄ ν − nβ1

)]
(nα1)2 +

(
2πc

v̄ − nβ1

)2 (3.2)

where the first term is nearly Lorentzian at low perturber density, n, and represents the

pressure broadened and shifted line core. The second term has a dispersive shape, with

asymmetric shading. The rate for pressure broadening of the core Lorentzian, γ, is normally

defined from the low pressure line shapes by the full-width half-maximum (FWHM) line

width and expressed with units of MHz/Torr:

∆νFWHM = γP + ∆νn (3.3)

where ∆νn is natural broadening and

γ =

(
2v̄
πc

) ( c
kT

)
α1 (3.4)

Similarly, the rate for the pressure-induced shift of the line center is:

δ =

(
2v̄

2πc

) ( c
kT

)
β1 (3.5)

Finally, the asymmetry of the line shape, or how much of a tail the line shape has to one

side compared to the other, is described by the parameter, βo.

A fit of equation (2) to the full set of data for T = 343 K similar to that provided in

Figures 3.5 and 3.6 yields the rate parameters reported in Table 3.1. The fits are limited

to the core of the line, defined as the signal near resonance from 25% of the peak to the

peak. The wing of the lines and secondary maximum are not described by equation 3.2 and

are discussed further below. The quality of the fits is indicated by the residuals displayed

in Figures 3.5 and 3.6. Typically, 8 spectra were recorded at pressures of 50-15,000 Torr.

Linear fits yield the rates in Table 3.1 with uncertainties reported as the 95% confidence

interval.
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Table 3.1: Pressure Broadening and Shift Rates

D1 D2 Temperature Reference

4He Broadening γ (MHz/Torr) 16.1 ± 0.2 17.0 ± 0.3 343 Experiment

17.6 ± 0.1 16.5 ± 0.1 353 [65]

20.3 ± .3 314 [83]

18.9 ± 0.2 20.0 ± 0.2 394 [68]

18.3 ± 0.2 18.4 ± 0.2 353 [67]

17.9 ± 0.2 373 [54]

19.0 ± 2.0 15.0 ± 2.0 320 [39]

18.3 ± 0.9 [42]

22.5 ± 1.1 310 [12]

18.5 ± 3.4 18.5 ± 3.4 320 [60]

19.3 18.1 313 Theory

21.6 19.8 394 [15]

15.7 21.3 394 [53]

14.3 14.3 320 [43]

17.1 12.5 450 [69]

4He Shift δ (MHz/Torr) 4.60 ± .12 .20 ± .14 343 Experiment

4.57 ± .02 0.28 ± .05 353 [65]

0.39 ± .06 314 [83]

4.71 ± .04 0.37 ± .06 394 [68]

4.40 ± 0.1 .47 ± .06 353 [67]

5.0 ± 1.0 0.9 ± 0.2 320 [39]

6.2 ± 0.5 [42]

2.2 ± 0.5 310 [12]

Continued on next page
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Continued from previous page

D1 D2 Temperature Reference

-0.74 ± 0.34 320 [60]

4.66 0.20 393 Theory

5.8 1.10 394 [15]

-5.8 -1.13 394 [53]

1.09 1.09 320 [43]

4.13 1.76 450 [69]

4He Asymmetry β0 (rad nm3) 0.51 ± .04 0.24 ± .02 343 Experiment

-0.98 ± 0.03 -0.12 ± 0.03 353 [67]

-0.61 ± 0.03 -0.14 ± 0.04 353 [65]

1.1 0.3 313 Theory

3He Broadening γ (MHz/Torr) 16.8 ± 0.5 19.4 ± 0.4 343 Experiment

19.0 ± 0.3 21.2 ± 0.2 353 [67]

18.12 ± 0.07 20.30 ± 0.08 363 [44]

26.32 393 [50]

19.6 20.1 393 Theory

3He Shift δ (MHz/Torr) 5.65 ± 0.35 0.65 ± 0.2 343 Experiment

5.4 ± .05 .62 ± .04 363 [44]

6.32 393 [50]

5.74 ± 0.15 0.69 ± 0.05 353 [67]

5.45 -0.01 393 Theory

3He Asymmetry β0 (rad nm3) 0.43 ± 0.01 0.30 ± 0.03 343 Experiment

-0.55 ± 0.03 -0.24 ± 0.03 353 [67]

0.50 0.125 333 Theory
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The prior experimental 4He broadening rates for the D2 line vary from 14.3-22.5

MHz/Torr and were measured in a modest temperature range of 310-394 K. The modern

results (since 1990) are more closely grouped with an average of 18.8 ± 1.7 MHz/Torr.

Scaling the rates to a common temperature requires a prediction of the temperature

dependent cross-section, [34, 63, 66, 83] but only marginally reduces the variation in the

results. The current observation is somewhat lower at 17.0 ± 0.3 MHz/Torr, just outside

of the range of the modern measurements. The modern D1 rates exhibit a smaller range

with an average of 18.2 ± 0.6 MHz/Torr, and the present result is again somewhat low. The

grating spectrometer employed in the current work is designed to examine the far wings

of the lineshapes and has poorer spectral resolution than the laser absorption experiments.

The preferred results are from references [67, 68, 83].

It is worth noting that the theoretical predictions for the D1 broadening rate, even when

using the same interaction potentials and temperature, vary from 15.7-20.2 MHz/Torr. The

semi-classical Anderson-Tallman line shape theory predictions [15] and the full quantum

mechanical Baranger calculations done by Loper [53] yield predictions that vary by more

than the range of experimental observations. The Anderson-Talman theory for the full line

shape is discussed in Section 3.4.3.

Comparing the 4He and 3He results reveals an interesting trend. For the D2 line the

current 3He rate is 4% larger than the 4He rate, which agrees almost exactly with the only

prior study of both collision partners [67]. Similarly for the D1 line, the ratio is 14% higher

in the current results, compared with 15% in reference [67]. The primary isotope effect is

the higher relative speed of the collision pair, which would predict a 15% increase for 3He

due to the reduced mass of the 3He.

The collision induced shift rates are dramatically higher for the D1 line than the D2

line. The D2 line is influenced by two surfaces, with competing binding (see Section 3.4.2),

yielding small shifts. The current result for the D1 line, 4.60 ± 0.12 MHz/Torr and 5.65 ±
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0.35 MHz/Torr for 4He and 3He respectively, agree quite favorably with the prior modern

results with averages of 4.6 ± 0.2 MHz/Torr and 5.8 ± 0.5 MHz/Torr. The agreement

for the D2 line is similar with the present results of 0.2 ± 0.14 MHz/Torr and 0.65 ± 0.2

MHz/Torr in agreement with the average prior results of 0.38 ± 0.08 MHz/Torr and 0.65 ±

0.04 MHz/Torr. However, the theoretical predictions sometimes disagree even on the sign

of the shift.

In Figure 3.7, the spectra are folded about the line center to illustrate the asymmetric

nature of the modified Lorentzian line shape. The asymmetry parameter, βo, is positive,

reflecting a higher intensity on the blue side of the line, consistent with equation (2). The

asymmetry is somewhat larger for the D1 line and has the same sign as the shifting rate.

The asymmetry rates generally follow the trends observed for the collision induced shifts,

as previously reported for Csrare gas collisions [14]. The asymmetry parameters from

prior studies reported in Table 3.1 use a different sign convention, where βo < 0 implies a

repulsive interaction potential [67]. The current and prior observed line shapes for He all

exhibit a higher intensity on the blue side of the line.

The primary focus of the current work is to characterize the high pressure line shapes,

focusing on the non-Lorentzian features far from line center. In particular, the broader

absorption spectrum of Figure 3.4 illustrates the blue satellite of the D2 line near 735 nm.

The location, height and shape of this satellite peak is a strong probe of the interaction

potential. To better characterize the full line shape, the absorbance is converted to the

cross-section in Figure 3.8. The absorption cross-section, σ, is defined as:

σ(λ) = A/(nL) =
gu

gl

λ2

8π
Aulg(λ) (3.6)

where

n = Rb density

L = vapor path length = 8.125 cm

gu,l = degeneracy of the upper and lower levels: g(2P3/2) = 4, g(2S 1/2) = g(2P1/2) = 2
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Figure 3.7: Asymmetric line shapes observed at 343 K and 998 Torr for (—) 4He and (-

- -) 3He. The red wings (—) are less intense than the blue wings (—) of the line shape,

yielding a positive value for β0

Aul = spontaneous emission rate between the upper and lower level:

A(2P3/2) = 3.81x107s−1 and A(2P1/2) = 3.61x107s−1

g(λ) = the wavelength dependent transition line shape

For a Lorentzian line shape with a width of 170 GHz (the D2 line at 10,000 Torr), the peak

cross-section would be σ = 6.9x10−14 cm2, about twice the value observed in the spectrum

of Figure 3.8 with a peak D2 cross-section of 3.6x10−14 cm2. The Rb density appears to be

overestimated by the wall temperature, with ∆T = 6K sufficient to explain the difference.

The variation in Rb density due to cycling of the temperature control loop produces a

periodic variance in the absorbance of Figure 3.4. This variation is removed in Figure 3.8.

The temperature varies periodically with a peak-to valley difference of 3 K and a period of

3.5 min. At T= 473 K, the Rb vapor pressure curve exhibits a 12% change in density for

the 3 K temperature variation. By ratioing the observed absorbance to the Rb density when

calculating the absorption cross-section, this variance is fully removed.
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Figure 3.8: Absorption cross-sections at 10,000 Torr observed for: (—) 4He and (—) 3He

and (- - -) predicted from the Anderson-Talman theory with dipole moment variation and

absorption Boltzmann factor. The spectra are obtained by merging the observed absorbance

at T = 333 K near line center to T = 533 K in the far wings. The oxygen absorption and

several calibration lamp lines are retained in the 3He spectrum.

The absorption cross section reported in Figure 3.8 is comprised of absorbance spectra

for six Rb densities, n = 2.35 × 109 − 5.36 × 1013atoms/cm3 (T = 333-533 K). By

merging the absorbance at low density for the line center and at high density for the blue

satellite, a single curve is developed with larger dynamic range. A variation in cross-

section of more than 4 orders of magnitude is observed. Note that the shapes of the 4He

and 3He wing spectra are quite similar. The location of the D2 blue satellite is 735.7

nm independent of pressure with an amplitude of 0.03% of the peak at T= 100oC and

10,000 Torr. The location of the blue satellite is predicted by the maximum in the X-B

difference potential as discussed below at 728.6 nm. The B barrier in the B2Σ+
1/2 − X2Σ+

1/2

difference potential from reference [19] predicts the He blue satellite at 721.5 nm, whereas
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the surfaces reported in reference [16] predict a maximum at 723.8 nm. The current ab

initio surfaces systematically over predicted the barrier height in the B2Σ+
1/2 surface.

3.4 Discussion and predicted line shapes

The observed high-pressure line shapes are compared with predictions of the semi-

classical Anderson Talman theory in the following discussion. The presentation includes a

brief development of the theory, a description of the potential surfaces, and a comparison

of the predictions with the current observations.

3.4.1 Anderson Talman Line shape theory with dipole moment variation.

In the Anderson Talman theory of pressure broadening, [60] the line shape, I(ν), is

determined from the Fourier transform of the auto-correlation function, Φ:

I(ν) ∝ Re

∞∫
0

Φ(s)ei2πνsds (3.7)

Φ(s) = e−ng(s) (3.8)

where n is the density of the perturber and the accumulated phase difference, g(s), is defined

by the difference potential, ∆V(r), and collision trajectory with impact parameter, b, and

relative speed, v. We have recently applied this theory to the Cs D1 and D2 lines for

collisions with rare gases and the approach is developed in further detail in reference [34].

Recently, Allard et. al. [1] has derived a modified version of the Anderson-Talman

equations that incorporates the variation of dipole transition moments, d, with inter-nuclear

separation, r. They also include a Boltzmann term that gives the probability distribution

for inter-nuclear separation,

d̄(r) = d(r)eVX(r)/2kT (3.9)
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where VX is the ground state surface used to describe an absorption profile. With these

modifications, the accumulated phase for a single adiabatic surface is:

g(s) =
1

d̄2(r(0))

∞∫
0

2πbdb

∞∫
∞

dx

d̄2(r(0)) − Exp

−i
~

s∫
0

dt∆V(r(t))

 d̄(r(0))d̄(r(s))


(3.10)

assuming straight line trajectories:

r(t) =
√

b2 + (x + v̄t)2 (3.11)

Allard et. al. note that including the Boltzmann factor is not consistent with straight line

trajectories, but improves agreement with experiment [1]. Equation (10) uses an average

velocity, v̄, rather than including the Maxwellian speed distribution. With this form of

the difference potential, the integral over time, t, in the exponential can be accomplished

analytically. The remaining two integrals over x and b are accomplished numerically.

The real and imaginary parts of the accumulated phase

g(s) = α + iβ (3.12)

at large correlation distances, s, become linear:

α(s) = α0 + α1s (3.13)

β(s) = β(0) + β1s (3.14)

yielding the core line shape of Equation (3.2). The wing of the line shape requires the full

integral analysis of Equations (3.7-11).

3.4.2 Potential surfaces.

The diatomic potential surfaces that arise for collisions between the rubidium in its

ground 2S 1/2 state or first excited 2P1/2,3/2 states, and helium are required to predict the D1

and D2 line shapes. The ground X2Σ+
1/2 and excited A2Π1/2, A2Π3/2 and B2Π+

1/2 potential

energy surfaces have been calculated using one-electron pseudopotential technique and are

provided in Figure 3.9.
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Figure 3.9: Rb-He potential energy surfaces

The calculation method is based on the use of pseudopotentials, which reduces the

Rb-He excimer to a one-electron molecular problem. In this model, Rb+ and He are

treated as two closed-shell cores interacting with the alkali valence electron via semi-

local pseudopotentials. The total potential energy includes the core-core interaction, the

interaction between the Rb valence electron and the ionic system Rb+-He, and the spin

orbit coupling.

The core-core interaction, which corresponds to the Rb+-He ground state potential

energy curve, is taken from the accurate coupled cluster calculations of Hickling et al. [36]

Single and double excitations were included, along with a perturbative treatment of the

triple excitation terms, CCSD(T). This potential is fit using the analytical form of Tang and

Toennies [75]. The equilibrium distance of the neutral dimer is larger than that of the ionic

system, and few energies were calculated around this distance. Providing an analytical

form for the Rb+-He core-core interactions increases the accuracy in the region of interest

for the neutral Rb-He dimer. The analytical form contains the well-known long range

van der Waals terms and an exponential short-range repulsion. By least squares fitting,
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the parameters of the analytical form were derived. An excellent agreement is observed

between the analytical and the original numerical potential. The difference between the

analytical and the numerical potentials for all internuclear distances is < 3 cm−1.

For the interaction between the Rb valence electron and the ionic system, Rb+-He, we

have performed a one-electron ab initio calculation using semi-local pseudopotential for

the Rb+ core and the electron-He effects. The electron-He atom interaction was represented

by a pseudopotential fitted in our group. However, the Rb atom has been represented by

the one-electron pseudopotential proposed by Barthelat et al. [27] and used in previous

calculations [13, 24, 25]. In addition, we take into account the core-valence correlation by

applying the operator formulated by Müller et al. [58]. For each atom (Rb or He), the core

polarization effects are described by the effective potential proposed by Müller and Meyer.

The electric dipole polarizabilities were taken as 9.245 a.u. for the Rb+ core and 1.3838

a.u. for He [49, 78].

The pseudopotential parameters were optimized in order to reproduce the ionization

potentials and the lowest valence s, p and d one-electron states as deduced from the atomic

data tables. The Gaussian type orbital basis sets used for the rubidium and helium atoms

were 6s/6p/4d and 3s/3p. The calculated ionization potential and the lowest atomic energy

levels for Rb were compared with the experimental data [5, 57] and a good agreement was

observed. The largest absolute error is 32.43 cm−1 obtained for 5s-6p transition energy.

The spin-orbit interaction is evaluated using the semi-empirical scheme of Cohen and

Schneider [23]. The spin-orbit coupling for the electronic states, dissociating into 5p, is

given by the following matrix:
Ep

(
2Π

)
− 1/2ξ ξ/

√
2 0

ξ/
√

2 Ep

(
2Σ+

)
0

0 0 Ep

(
2Π

)
+ 1/2ξ

 (3.15)
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The diagonalization of such a matrix provides us with the eigenvalues and the energy

splitting leading to three molecular states related to the atomic limits S 1/2, P1/2 and

P3/2. The spin orbit coupling constant ε5p (Rb) = 158.396 cm−1 was used in the present

calculation. The rotation matrix issued from the diagonalization is used to determine the

dipole moment including the spin-orbit interaction.

The atomic asymptotic limits in Figure 3.9 have been shifted to E=0 to better compare

the surfaces. The ground X2Σ+
1/2 surface correlating with Rb 5 2S 1/2 is largely repulsive with

a very shallow well of depth ≈ 4 cm−1 at about 0.63 nm. The A2Π1/2 surface correlating

with Rb 5 2P1/2 has a well of 202.9 cm−1 near 0.30 nm. A local maximum of 24.3 cm−1

occurs at longer range, near 0.53 nm. The A2Π3/2 and B2Σ+
1/2 both correlate to Rb 5 2P3/2.

The A2Π3/2 well is deeper than the A2Π1/2 surface , 275 cm−1, but at the same location, 0.30

nm. The B2Σ+
1/2 exhibits a long range shallow well of 0.85 cm−1 near 1.0 nm. The barrier

appears as a broad shoulder near 0.35 nm, with no minimum at shorter range. These well

depths differ by those reported in reference [16] by 20-210%.

The corresponding difference potentials are shown in Figure 3.10. There is no long

range minimum in the A2Π3/2-X2Σ+
1/2 difference potential and the minimum for A2Π1/2-

X2Σ+
1/2 is less than 0.2 cm−1 suggesting no red satellite features for the D1 and D2 lines. The

D1 A2Π1/2-X2Σ+
1/2 difference potential has a positive extremum of 24.4 cm−1 at a separation

of 0.57 nm. The B2Σ+
1/2-X2Σ+

1/2 component of the D2 transition has a positive extremum

of 907.7 cm−1 at a separation of 0.34 nm. The variation of dipole moment with nuclear

separation and the Boltzmann factors described in equations (9-10) are provided for each

surface in Figure 3.11. The dipole moments for the current B-X surface decrease from the

asymptotic limit by < 15% at r = 3 nm, with minimal variation for the other transitions.

The variation at shorter distances has minimal impact on the line shapes. However, the

Boltzmann factors vary by a factor of 2-3 for the X and B states, and will significantly

modify the wing line shapes.
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Figure 3.10: Rb-He difference potentials for the current work (—) and (- - -) for the

identical potentials used by Blank [16] and Bouhadjar [19].

To compute the D1 and D2 spectra we treat each of the difference potentials separately.

The D1 line is separated from the D2 line in Rb by 237 cm−1 and only the X − A2Π1/2

difference potential is required to compute the line shape. The D2 line is more complicated

and requires both the X − A2Π3/2 and X-B difference potentials. An approximate method

to treat this problem for large spin orbit coupling is to compute g(s), for each difference

potential and weight them equally to compute the correlation function. This procedure is

equivalent to a convolution of the two spectral lines. For ease of computation, we fit the

numerical difference potentials to an expansion in 1/rn, with n = 6-20.

In our recent work on Cs rare gas line shapes, several empirical modifications of

the potential surfaces were required to achieve reasonable agreement with the observed

line shapes [34]. No empirical modifications of the potential surfaces are required in the

present study.
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(a)

(b)

Figure 3.11: Dipole moment (a) and Boltzmann Factors (b). Hager (- - -) [34] and

Bouhadjar (—) [19]. A corresponds to the dipole moment for the X − A transitions with B

corresponding to the X − B transition.
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3.4.3 Comparison of observed and predicted line shapes.

The broadening, shifting and asymmetry parameters as predicted by Equation (3.2)

are compared with the present observations in Table 3.1. The calculated broadening rates

are systematically larger than the currently observed rates by 1.1-3.2 MHz/Torr and agree

within 20%. The 3He broadening rates are higher due to the increased relative velocity.

However, the increase is not as high as anticipated and different for the D1 and D2 lines due

to a line dependent decrease in cross-section with temperature, as discussed below. The

collision induced shift rates are generally more sensitive to interaction potential and yet

exhibit very good agreement.

There is a significant difference in the shift rates for the D1 and D2 lines. This has

also been observed in our recent Cs study [34]. The A2Π3/2-X2Σ+
1/2 difference potential

yields red shifts, whereas the long-range barrier in the B2Σ+
1/2-X2Σ+

1/2 surfaces yields a blue

shift. The convolution of these two line shapes yields a smaller blue shift for the He D2

line. In contrast, the D1 line involves only the A2Π1/2-X2Σ+
1/2 surface which exhibits a

modest barrier and thus a larger blue shift. The magnitude of the predicted shift rate is

about twice the measured value for the D1 line, but close to the small value observed for

the D2 line. The predicted shifts rates are remarkably similar to the observations, except

for the 3He D2 line. Indeed, the predictions for the 3He D2 line suggest a near zero

shift, whereas the observations indicate an increased shift to the blue. The temperature

dependence of the cross-section for the D2 shift appears to be a most sensitive probe of the

interaction potential, and is discussed further below. The predicted asymmetry parameters

are correlated with the shift rates.

Several predictions of the high pressure D1 and D2 line shapes for Rb-4He and 3He

collision pairs, at 10,000 Torr and T = 333 K near line center and T = 533 K in the far

wings, are provided in Figure 3.12. Each spectrum consisting of 105 digitized points was
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computed numerically from the Fourier transform of the correlation functions for the D1

and the convolved D2 difference potentials.

The blue satellite predicted for the D2 line is readily apparent and located at 735.7

nm, consistent with the observations of Figure 3.4. This secondary maximum in the D2 far

blue wing occurs at a wavelength corresponding to the barrier height in the B−X difference

potential. The barrier of 907.7 cm−1 reported in Figure 3.10 leads to the observed shift of 52

nm. The extremum in the difference potential is broader and occurs at shorter range for Rb

than the corresponding surfaces for Cs. This is consistent with the stronger, more defined

blue satellite in Cs [34]. Inclusion of the variation in dipole moment and corresponding

Boltzmann factors in equations (9-10) further flattens and reduces the magnitude of the

peak of the blue satellite. The variation in dipole moment has a minor effect on the

amplitude of the blue satellite. The effect of the Boltzmann factor in absorption (using

the ground state potential) is more significant and produces a blue satellite with a poorly

defined peak and agrees well with the current observations. A Boltzmann factor based on

the B state surface, as suggested for emission [1], dramatically reduces the intensity of the

far wing, inconsistent with the observed line shape.

The D1 line shown in Figure 3.12 exhibits a red shoulder, which may result from

the tail of a strong, but unresolved, blue feature that is blended with the core. The barrier

heights for the A2Π1/2-X2Σ+
1/2 transitions are considerably less, leading to smaller shifts and

larger amplitudes. The D1 blue satellite is about 0.5x10−3 of the resonant peak, or ≈5 times

larger than the D2 blue satellite. The blue D1 satellite does not present a spectral peak, but

rather generates a shoulder on the core line shape.

A full prediction of the Rb-4He line shape for both lines is directly compared with the

experimental results in Figure 3.8. The potentials of Figure 3.9 do not require empirical

modification to provide excellent quantitative agreement. The dipole moment variation and

absorption Boltzmann factor is critical to obtaining strong agreement. The difference in the
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(a)

(b)

Figure 3.12: Predicted 4He line shapes at 10,000 Torr and 333K: (a) Rb D2 line with

convolution of both surfaces, assuming from top to bottom (—) no dipole moment

variation, (—) dipole moment variation with no Boltzmann factor, (—) dipole moment

variation with ground state Boltzmann factor, and (—) dipole moment variation with

excited B state Boltzmann factor; (b) Rb D1 line with (—) unmodified potentials, (—)

difference potential scaled by 0.5, and (—) difference potential scaled by 2.0.
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(a)

(b)

Figure 3.13: (a) Predicted full scan of absorption cross-section on logarithmic scale, and

(b) absorption cross-section from Bouhadjar [19] at 320 K (- - -) and 500 K (—).
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modeled and predicted D1 line is the greatest. The experimental observations for the 3He

and 4He collision partners also exhibit a greater difference on the red side of the D1 line,

presumably reflecting greater temperature dependence.

3.4.4 Predictions of the temperature dependent broadening and shifting rates.

A prediction for the temperature dependence of the broadening and shifting rates is

provided in Figure 9. The rates are converted to cross-sections:

σb = γ

(
kT
v̄

)
(3.16)

σs = δ

(
kT
v̄

)
(3.17)

to remove the influence of relative velocity on the results. Two sets of predictions are

provided for each case. Using the average velocity as expressed in Equation 3.10 allows for

highly sampled temperature dependence. However, non-physical oscillations are observed,

particularly for the D2 line. By employing a Maxwellian distribution of relative speeds

the oscillations are removed, but the temperature dependence is less sampled, due to the

increased numerical complexity.

Often, broadening cross-sections are assumed independent of temperature, as

predicted for a hard sphere interaction. Alternatively, the broadening cross-section for

a long range attractive, r−6, interaction, yields a T−0.3 dependence [37, 83]. The D2

broadening cross-section is nearly independent of temperature, whereas the D1 line is closer

to the predicted van der Waals potential, presumably due to the single, isolated surface.

Note that the shallower well observed for the Rb-He system compared with Cs-Ar with

higher polarizability, [34] produces a smaller temperature dependence. The 3He collision

partner is a reasonable substitute for higher temperature conditions, as the potential surfaces

are unchanged. The observed 3He broadening rate does not increase as much as predicted

by the mass effect on average velocity. This difference is greater for the D1 line, consistent

with the predicted stronger temperature dependence of the cross-section. The predicted
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(a)

(b)

Figure 3.14: Predicted temperature dependence for the broadening cross-sections for the

Rb-4He D1 and D2 lines using: (—) average velocity and (*) full Maxwellian speed

distribution. Experimental observations for: (�) 4He, (�) 3He with mass change reflected

as temperature increase, and (◦) prior observations from references [65, 67, 68, 83].
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(a)

(b)

Figure 3.15: Predicted temperature dependence for the shifting cross-sections for the

Rb-4He D1 and D2 lines using: (—) average velocity and (*) full Maxwellian speed

distribution. Experimental observations for: (�) 4He, (�) 3He with mass change reflected

as temperature increase, and (◦) prior observations from references [65, 67, 68, 83].
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isotope effect on the D2 shift rate is less supported by the data. At high temperatures the

predicted shift rate trends toward zero, whereas the observed rate increases to the blue. The

shift rate is more sensitive to the interaction potential and the weighting of the two surfaces.

A detailed experimental study of the temperature dependence requires the development of

an alkali vapor cell where the temperature can be increased without modifying the alkali

vapor density. In the current apparatus, temperature controls the Rb vapor pressure and the

line center quickly becomes opaque at T > 373 K.

The cross-sections for collision-induced shifts depend critically on the interaction

potentials. For the rather large blue shift associated with the D1 line, the shift cross-section

is predicted to depend only weakly on temperature. However the small shift predicted for

the convolved D2 line approaches zero at high temperature.

Given the experimental fidelity available in experimentally observed line shifts from

laser absorption experiments of about 1% error, an experimental test of the current

predictions is warranted, but requires independent control of Rb vapor density and gas

temperature. Unfortunately, the available experimental results span a small range of

temperatures and have been measured with different techniques.

3.5 Conclusions

The experimentally observed, non-Lorentzian line shapes for the Rb D1 and D2 lines

broadened by 4He and 3He at pressures up to 20 atmospheres (≈15,000 Torr) are in strong

quantitative agreement with the predictions of the Anderson-Talman theory using one

electron pseudo potentials. The predictions of the line core broadening agree with the

observations to within 14%. The agreement for shifting rates is better, 10%, except for

the 3He D2 line which is near zero. The significant difference in the observed shift rates

for the D1 and D2 lines is explained by the convolution of the red shifted line shape from

A2Π3/2 − X2Σ+
1/2 difference potential with the blue shifted line shape of the B2Σ+

1/2 − X2Σ+
1/2

surface. The asymmetry parameters predictions are less accurate, with more than a factor
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of two disagreements with observations. To match the location, amplitude and shape of the

blue wing of the D2 line requires the inclusion of dipole moment variation and Boltzmann

factor. The difference in the modeled and observed wings of the D1 line is larger, including

a significant difference for 3He and 4He collision, suggesting a more sensitive dependence

on temperature. The current prediction for the temperature dependence of the line shape

parameters awaits an experimental verification at low Rb density.
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IV. Temperature Dependent Broadening and Shifting

4.1 Introduction

The diode pumped alkali laser (DPAL) was first proposed in 2001 as an alternative

to high-power, diode-pumped, solid-state lasers [46, 48]. A high power, >1 kW, system

with 48% optical-to-optical efficiency has recently been reported [18], and development

for laser weapons applications [62] is in progress. The radiation from un-phased diode

bars is absorbed by an alkali metal vapor (Potassium, Rubidium, or Cesium) on the D2

line, 2S1/2�2P3/2, collisional relaxation populates the lower fine structure split 2P1/2 state,

and lasing is achieved on the 2P1/2�2S1/2 transition. The alkali metal vapor is pressure

broadened by a rare gas, usually helium, to efficiently absorb the emission from spectrally

narrowed diode bars or stacks. The concept of using a gas phase medium for the phasing of

large diode arrays combines the best features of electrically driven lasers with the inherent

thermal management advantages of a gas lasers. Indeed, the primary factor for DPAL laser

weapon development is the promise of improved beam quality over diode pumped solid-

state lasers.

In the DPAL system, the cycle rate for pump, collisional fine structure mixing

and lasing can be very high, < 0.1 ns, particularly for pump intensities exceeding 10

kW/cm2 [56]. The initial linear response of output power to input power is degraded at high

pump intensity when the system becomes bottlenecked on the fine structure transition [33].

The transition to this bleached limit depends critically on the D2 absorption line shape

relative to the spectral width of the diode pump [35]. Thus, the most important kinetic

parameters are the rates for fine structure mixing and line broadening. Spatial variations

in diode pump intensity and flow of the gas through the resonator will lead to turbulence

and gain medium index variations, reducing beam quality. Rapid fluctuations in the gain
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medium can not be corrected by adaptive optics and will ultimately limit device beam

quality.

The temperature dependence of the mixing and broadening rates is critical to modeling

the DPAL performance. Unfortunately, the rates for line broadening and shifting are

only available for the Rb-He DPAL system over a limited temperature range, T = 310-

450 K [12, 69]. The numbers with the greatest confidence have an even more limited

temperature range, T = 314-394 K [65, 67, 68, 83]. Furthermore, theoretical predictions

vary widely, with disagreements on even the sign of the shift rate [12, 53]. In the present

work we report the temperature dependence of the Rb D2 and D1 line broadening and

shifting rates for 4He for T = 373-723 K. To achieve this broad temperature range, control

of the alkali vapor density independent of the gas temperature is required.

The line shape parameters are a sensitive probe of the interaction potentials [34].

By placing the current results in context of prior theoretical predictions, we explore the

sensitivity of line shapes to the potential surfaces. The larger objective is to empirically

inform potential surfaces to predict both the temperature dependence of the line broadening

and fine structure mixing rates, unifying the Rb-He DPAL kinetics.

4.2 Experiment

The experimental setup for the laser absorption spectroscopy experiment is shown

schematically in Figure 4.1. A Coherent Verdi 18 pumped continuous wave (CW) Spectra

Physics Matisse Ti-Sapphire ring cavity laser, with bandwidth 10 MHz, was tuned over

approximately 32.5 GHz centered on the 52S 1/2 → 62P1/2 (D1, λ1 = 795 nm) and 23

GHz centered 52S 1/2 → 62P3/2 (D2, λ2 = 780 nm) transitions. The beam was amplitude

modulated at 360 Hz then directed through the alkali cell with a small portion of the beam

split off into a vacuum sealed Triad Technologies Pyrex 25 mm x 50 mm cell filled with

87Rb to be used as an absolute wavelength reference. Polarization of the laser beam was

oriented horizontally with a typical initial output power of 600-800 mW. Various filters
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and optics reduced the power delivered to the test cell to approximately 94 nW at its

maximum with a beam radius of 2 mm giving a beam intensity of approximately 2.8

mW/cm2. The calculated saturation intensity, Isat, is approximately 1.6 mW/cm2 at vacuum

and 1.2 mW/cm2 at pressure.

Three Hamamatsu S2281-04 silicon photodiodes with Hamamatsu C9329 pre-

amplifiers connected to Stanford Research Systems SR850 DSP lock-in amplifiers were

used to collect the incident, transmitted, and reference absorption signals. The integration

time for the lock-in amplifiers was set at 100 ms giving 10 data points per second. The alkali

containment cell was specially designed for this experiment to allow for low alkali number

densities while opperating at a range of increased cell temperatures ranging from 373 K

to 723 K. Further discussion of the alkali containment cell can be seen in Section 4.2.1.

Helium (4He), 99.999% purity, was added and removed from the system via gas/vacuum

handling system after going through a SAES MC1-902F gas getter providing 99.9999%

purity. Pressure was monitored using a MKS model 609A manometer with a 670 signal

conditioner for pressures up to 500 Torr. An Agilent model FRG-700 manometer with a

XGS-600 signal conditioner was used to measure vacuum pressures down to an ultimate

vacuum pressure of 3.9 microtorr. When the turbo pump was off, the leak rate was < .5

mTorr/min.

Laser wavelength information was collected using a fiber coupled High-Finesse WSU-

2 wavemeter using the reflection off of a pellicle placed at the exit aperture of the Matisse

laser. The wavemeter, used in conjunction with the 87Rb reference cell, created the

wavelength axis for the data. Day to day variations in the absolute frequency reported

by the wavemeter relative to the Rb reference cell were on the order of 10-20 MHz, with

variations during the day of 1-2 MHz. These variations are caused by the sensitivity of the

wavemeter to changes in temperature and humidity within the laboratory. The day to day
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Figure 4.1: Setup for the temperature dependent shift and broadening rates experiment

variations are on the order of the baseline variations discussed later, with the run to run

variations during the day being much smaller.

4.2.1 Alkali Cell.

A new alkali containment cell was required for the completion of this experiment. The

typical sealed cell or heat pipe configurations [38] keep the alkali pool at the temperature of

the cell thereby controlling the number density based off the vapor pressure curves [73, 74].

This leads to an exponential increase in alkali number density as experimental temperature

increases. A high alkali number density creates the problem of the sample appearing

completely opaque to the probing laser during the absorption experiment. A balance must

be struck between having enough alkali density to give a good signal to noise ratio while

still being low enough not to be opaque to the probe laser. The cell, shown in Figure 4.2,

avoids this high alkali number density problem by being a true two temperature system. The

alkali, located in the alkali pool portion of the cell, is kept at a separate, lower temperature

than the rest of the cell. This temperature, separate from the experimental temperature,
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drives the alkali number density. The rest of the cell can then be raised to the required

temperature for the experiment without affecting the alkali number density driven by the

lower temperature alkali pool. Typical values for the number density of alkali inside the

cell before closing the valve were approximately 1011 − 1012 cm−3.

Figure 4.2: Alkali containment cell. This cell design allows for a two temperature system

where the alkali density is controlled independently from the experimental temperature.

A VAT Series 541 metal-to-metal angle valve allows for the alkali pool to be closed off

from the rest of the cell preventing fluctuations in the number density during an experiment.

The cell also uses another metal to metal valve to attach to a gas handling system that

allows for the addition or removal of buffer gas. The entire cell can be sealed off from

the gas handling and vacuum system in order to keep the number density of the buffer gas

constant.

The body of the alkali containment cell is of stainless steel construction with welded

seams on the upper 5-way cross and the lower T sections. The 5 way cross sits on top of

the T section as shown in Figure 4.2 with the metal to metal valves located at either end of
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the T section. Connections between the various pieces, and holding the windows in place,

are Conflat (CF) 1 1/3” knife edge connections with silver coated copper gaskets. Silver

plated bolts and plate nuts are used in conjunction with the CF connections. Two wedged

sapphire windows are used in the upper cross along the beam path with a non-wedged flat

sapphire window and a flat cap being used on the cross connections parallel to the beam

path. The port with the non-wedged window is used to monitor alkali buildup inside the

cell. The capped port opposite the non-wedged window is not used during this experiment.

Heating of the cell is accomplished through the use of three sections of BriskHeat

thermal tape. One section of type BlH1010 heater tape is wrapped around the alkali

pool with temperature monitoring accomplished using Type J thermocouple attached to a

Watlow Model 96 proportional integral derivative (PID) temperature controller. The rest of

the cell is heated using two lengths of BWH1010 high temperature thermal tape, capable

of temperatures up to 1000 K. The first piece is wrapped around the two metal to metal

valves and the T connection, with the second length covering the upper 5 way cross. Type

K thermocouples were placed at the junction of the T connection and the 5 way cross as

well at the top of the 5 way cross. The two high temperature sections are connected to

Watlow EZ-Zone PID temperature controllers. Each section of thermal tape has its own

independent power and controller. The thermal tape and thermocouples are then wrapped

with ThermoTec exhaust insulating wrap with foil wrapped aero-gel blanket insulation

outside of that. The maximum temperature of the apparatus was limited by the braze

around the windows, which fails around 823 K. The experiment limited the temperature

to 723 K in order to not reach the failure point and destroy the cell.

4.2.2 Procedure.

Cell preparation begins by baking the cell at the highest temperature the experiment

will be operated at, up to 723 K, while using a turbo pump to vacuum the cell out down

to 3 to 4 µTorr. This removes anything that may be stuck on the wall and passivates the
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system at those higher temperatures. Once the bake-out is completed the cell is returned

to the starting temperature of 373 K, and the cell is isolated from the vacuum system by

closing valve 1. Valve 2, leading to the alkali pool, is opened allowing alkali vapor to

diffuse throughout the cell. During the diffusion process, the CW laser scans continuously

across the transition being investigated allowing for a continuous check on the amount of

alkali vapor inside the cell during the filling process. It was determined that the opportune

time to close valve 2, and stop the flow of any more Rb into the cell, was just before the

strongest transition features turned opaque to the probe laser. This allows for the transition

to broaden and drop in peak absorbance as the He buffer gas is added and at the same time

leave the highest possible absorbance features.

Immediately following the closing of the alkali pool, valve 1 is opened reconnecting

the cell to the gas handling system. Helium gas is slowly added to the cell at a rate of

approximately 1-2 Torr per second up to the desired pressure and allowed to come to

thermal equilibrium for 15 minutes. Once the gas has come to a thermal equilibrium

the pressure is recorded using the MKS Baratron Manometer. The cell is once again

sealed from the gas handling system by closing valve 1. Once sealed, with both the

Rb vapor and the He gas, the cell will not be reopened for the remainder of the current

experimental run thereby creating a system with a constant number density of alkali and gas

perturbers. Spectral scans across the transition of interest are taken at each cell temperature.

Temperatures are increased after each scan while the cell is sealed; each new temperature

takes approximately 10 minutes to reach the next set point and is then given 15 minutes to

thermally equalize at the new temperature. Upon completion of the run, the temperature is

slowly lowered back down to 373 K to avoid thermal gradients within the system that may

damage the connections. Finally the cell is opened to vacuum to remove the Rb-He mixture

to reset the cell for another run. After each run the cell must be rebaked and vacuumed to

remove anything that may have been reintroduced into the system.
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4.3 Spectral Analysis

4.3.1 Observed and Simulated Absorption Spectra.

Absorbtion spectra, as shown in Figure 4.3, for the D1 and D2 transitions and the

reference were created using Beer’s Law,

It = I0 e−σnl (4.1)

A = −ln
(

It

Io

)
= σnl (4.2)

where σ is the absorption cross-section, n is the number density, and l is the path length

through the cell. The It and I0 signals for the absorbance equations were made to be

approximately equal to each other while traveling through the cell with no alkali inside.

The two signals were not exactly equal which shows up as an offset of the entire line shape,

as seen in Figure 4.5. There is also a slight signal variation between the two detectors

as a function of wavelength which shows up as a cyclical wave feature as a function of

wavelength. This wave feature is well approximated using a low, 3rd order, polynomial.

The offset shown in Figure 4.5 is approximately A = 0.2 corresponding with the modulation

on the order of ∆A = 0.01.

The data in Figure 4.3 shows an increase in the absorbance as the temperature

increases. This may be caused by a small amount of alkali metal being deposited

somewhere in the cell, increasing the number density as the temperature increases. This

does not cause a problem as long as the data does not become opaque to the probing beam.

Other data sets show a decrease in the absorbance signal as temperature goes up. The

scans where the absorbance decreases suggests that no alkali metal gets deposited on the

wall during the filling process. The decrease results from out-gassing from the cell walls

which reacts with and removes some of the alkali vapor. Either an increasing or decreasing

absorbance signal is usable, as long as the signal does not drop too low for a good signal to

noise ratio and does not become opaque to the probing beam. Correctly filling the cell with

enough alkali that it does not deposit on the walls, while at the same time adding enough
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so that the signal is not eaten up by other impurities in the gas is a delicate balancing act

requiring much trial and error.

Figure 4.3: Absorption spectra of the Rb D2 (ν0 = 384.23 THz) transition. These spectra

were taken with the cell filled to 75 Torr of He at 373 K and then sealed. Temperatures

shown from top to bottom are 698 K, 648 K, 498 K, 448 K, 398 K, and 373 K.

To model the absorption spectra and extract line shape parameters, the hyperfine

transition lines, 4 for D1 and 6 for D2 transitions, were predicted for both the 87Rb and

85Rb isotopes. For the low pressure reference cell, only the 87Rb isotope is present. The

predicted line shape for a single isotope is provided in equation 4.3. When fitting the

predicted line shape to the observed spectra, the relative frequencies and line strengths

were constrained using the values given by Steck [73, 74]. The fit was given a global shift

allowing the locked transitions to shift as a group to create the best fit to the reference

data and refine the absolute laser frequency. A low order polynomial baseline is included

to account for detector response as discussed earlier. This global shift is the absolute

wavelength error present in the wavemeter being used on that day for that run, typically

on the order of between 60-80 MHz. This global shift is also applied to the high pressure
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absorption spectra to improve the accuracy of the observed collision induced shifts. A

built-in MATLAB non-linear least-squares fitting routine, lsqcurvefit, was used to fit the

series of Voigt profiles and polynomial baseline to the data.

Abs =

n∑
i=1

(A)(S i)V(νi − δ, γD, γL) + cubic (4.3)

In Equation 4.3 the summation over the hyperfine lines has a shared global amplitude (A)

which accounts for overall rubidium density within the cell. Each hyperfine line then has

its predetermined relative amplitude (S i) multiplied by overall Voigt line shape. The Voigt

line shape is a convolution of the Gaussian and Lorentzian line shapes and has parameters

ν0 for line center, γD for the doppler broadening on the Gaussian, and γL for the pressure

broadening on the Lorentzian. The parameters γD, γL, A, and δ are shared among all of

the hyperfine line Voigts. The pressure shift, δ, and pressure broadening, γL, are pulled

from these fits. The values used for center frequency and relative amplitudes are shown in

Tables 4.1 and 4.2.

V(ν, γD, γL) =

∞∫
−∞

G(ν, γD)L(ν − ν0, γL) (4.4)

G(ν0, γD) =
e−ν

2/(2γ2
D)

γD
√

2π
(4.5)

L(ν − ν0) =
1
π

1/2γL

(ν − ν0)2 + (γL)2 (4.6)

A fit of equation 4.3 including both isotopes for a typical high pressure absorption spectrum

is provided in Figures 4.5-4.6.

This baseline subtraction was the largest systematic source of error for the fits by

producing fitting errors in the absolute frequency axis of up to 8 MHz. Due to the

correlation of baseline and Lorentzian width, the uncertainty in width associated with

different baseline assumptions is somewhat larger, up to 30 MHz. In order to fully

characterize the error associated with various baselines, a set of various polynomials of

order 1 through 10 were fit to the same data set and the associated shift and broadening
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Table 4.1: D1 Hyperfine Transitions [73, 74]

TransitionFl→Fu Center Frequency (cm−1) Line Strength (S)

85Rb T22 12579.000 .2857

T23 12579.012 1

T32 12578.899 1

T33 12578.911 .7999

87Rb T11 12579.076 .0752

T12 12579.104 .3762

T21 12578.848 .3762

T22 12578.876 .3762

Table 4.2: D2 Hyperfine Transitions [73, 74]

TransitionFl→Fu Center Frequency (cm−1) Line Strength (S)

85Rb T21 12816.601 .8258

T22 12816.603 1.071

T23 12816.605 .8564

T32 12816.502 .3059

T33 12816.504 1.071

T34 12816.508 2.478

87Rb T10 12816.682 .1611

T11 12816.684 .4027

T12 12816.689 .4027

T21 12816.456 .0805

T22 12816.461 .4027

T23 12816.470 1.127
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(a)

(b)

Figure 4.4: Simulated D1 (ν =794.978 nm) and D2 (ν =780.241 nm) non-broadened

hyperfine lines at 373 K. The blue dotted lines represent the 85Rb hyperfine lines and the

red dotted lines represent the 87Rb hyperfine lines. A total combined line shape is shown

as the black dashed line.
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error analyzed. This procedure was repeated for every temperature at each separate buffer

gas fill pressure. The resulting global shift with associated error is taken as the overall shift

of the spectra from vacuum. A fit of the hyperfine lines to a single run with residuals can

be seen in Figures. 4.5 and 4.6.

Figure 4.5: D2 transition filled with 74.9 Torr of He at 498 K with fit. The red line is the

raw data with the dashed red line below being the baseline. The fit is shown as a dashed

black line over the gray data with the hyperfine lines being shown as smaller black dashed

lines. The residual to the fit of Equation 4.3 can be seen in the sub panel.

During the fitting shown in Figure 4.5, the Doppler portion of the broadening was fixed

to the set temperature of the system plus or minus one degree. This was done due to the

baseline problems discussed earlier creating a trade off between the Doppler and Lorentzian

line widths. By locking the Doppler width to its known value, the trade-off between the two

widths was removed when adding a baseline. During the fitting of the reference cell, the

Doppler width was approximately 580-590 MHz. At the set temperature of the reference

cell, 313 K, the expected width is 530 MHz. The measured width was wider indicating that
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Figure 4.6: D1 transition filled with 72.9 Torr of He at 548 K with fit. The fit is shown as a

dashed black line over the gray data with the hyperfine lines being shown as smaller black

dashed lines. The residual to the fit can be seen in the sub panel.

the intensity of the laser through the reference cell was many times over Isat. This did not

affect the line centers of the fits that are used as the wavelength correction.

With the completion of the fitting, it becomes evident that there are no problems in the

experimental setup related to either the polarization of the laser or the transition saturation.

A polarization problem within the experiment would manifest itself as saturating the

more intense transitions more than the weaker hyperfine lines. By locking in the relative

amplitudes of each of the lines and not having to modify those relative intensities to create

a non-structured residual, it is shown that polarization is not a problem. The saturation

intensity would show up as a much broader transition than expected due to the saturation

broadening present when pumping a transition well above the saturation intensity. Once

again our numbers, when compared with previous results and approximated pump intensity,

support that saturation broadening was not an issue during the experiment.
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4.3.2 Comparison of observed and predicted line shape parameters.

The shift and broadening rates as a function of temperature are sensitive measures

of both the choice of theory and the potential energy surfaces used by those calculations.

Prior theoretical predictions employ two techniques: the Anderson-Talman semi-classical

approach used by Blank [14] and the full quantum approach with Baranger coupling used

by Loper [53]. There is also a comparison to be made of two predictions that use the

same level theory, Anderson-Talman, but have two different potential energy surfaces. The

potential energy surfaces developed by Blank [14] are ab initio calculations with no dipole

modification, while the surfaces used by Hager [34] are psudo-potential surfaces provided

by Berriche et al. [13].

Figure 4.7: Temperature dependence of the Rb-He shift coefficient. Figure shows D1 in red

and D2 in blue. The current experimental data is shown as circles with other reported

literature as squares (diamonds) for D1(D2). Theoretical calculations from Blank(—),

Hager(- - -), and Loper(–.–) are also shown. For the D2 transition Loper has both Baranger

and Allard(–.x) coupling.
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The current experimental results are compared with the prior theoretical predictions in

Figures 4.7-4.11. The measured shift as a function of temperature in the experiment shows

a small, but measurable change in the reported shift coefficient at the higher temperature

ranges. The shift coefficients range from 4.36 MHz/Torr to 5.35 MHz/Torr for the D1

line and from 0.42 MHz/Torr to 0.99 MHz/Torr for the D2 line over the ∆ T = 350 K

range. A check on these results is done by comparing the lower temperature measurements

to reported results in literature at similar temperatures, which are shown in Figures 4.7

as square markers for the D1 and diamond for the D2 transitions. The rates reported by

[65, 67, 68, 83] compare well with measured values from this experiment in the 300-400

K temperature range. The shift coefficient, demonstrated by the Rb-He system, shows that

the D1 transition has a shift that is approximately 10 times larger than the shift exhibited by

the D2 transition. The variation for the D1 line is also on the order of 1 MHz/Torr compared

to the total range of the D2 line being closer to 0.5 MHz/Torr over the temperature range.

The results provided by Loper for the shift coefficient predict a negative (red) shift for

the center wavelength of both the D1 and D2 transitions. This result is of the opposite sign

as that of Blank’s shifts and Hager’s D1 shift coefficient, the data from this experiment, and

the results from various published results [67, 68, 83]. The magnitude of the theoretical

values from Loper also have much greater variation over the temperature range in question

than either this data set or other predictions.

The predicted shifts from Blank are in closer agreement with this experiment and

literature compared to those from Loper. While Blank’s predictions tend to overestimate

the shift for both the D1 and D2 transitions, they have the correct sign for the shift, as well as

following the magnitude of the shifts closely. The potential energy surfaces used by both

Blank and Loper were the same, with the only difference being the level of theory used

for each calculation. In this case, the semi-classical approach with the ab initio potentials

shows a much greater agreement with data.
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The last theoretical prediction for the shift coefficient comes from Hager et al [34].

Hager’s prediction employ Anderson-Talman theory, just like Blank’s predictions, while

using a pseudo interaction potential. A modified pseudo-potential created by Berrichi [13],

using data to inform portions of the potential, is used. While this potential does create a

better fit to the high pressure data from Chapter 3.4, it does not predict the temperature

dependence of the shift and broadening well. The shift predicted by Hager has wrong sign

for the direction of the D2 shift, but does predict the correct sign for the D1 transition. The

trend as temperature increases shows a decrease in the amplitude of the shift as well.

An attempt is made to tie the predicted shifts and their differences back to their

respective difference potentials. A closer look at the two potentials used, the ab. initio

from Blank and the pseudo-potential from Berriche, can be seen in Figures 4.8 and 4.9.

Starting with the ground state potentials and the kinetic energy of the rubidium we can

explore what regions of the interaction potential were probed. Using our temperatures of

300 K to 800 K the energy of the incoming perturber ranges from 208.5 cm−1 to 556 cm−1.

These energies compared to the ground state potential show that for Blank the interaction

distance being probed is 0.41 nm down to 0.34 nm and for Hager’s predictions 0.37 nm to

0.31 nm.

For the D1 line these interaction ranges are all in the attractive portion of the potential

difference curve for both Blank’s and Hager’s predictions. An attractive potential leads

to a red shift and as the temperature increases and the difference potential is probed more

and more the integrated value becomes less repulsive. The integrated area is still repulsive

leading to the blue shift, but is becoming less so. The prediction from Hager is probing a

portion of the difference potential that is much more attractive than the region being probed

by Blank. The region being probed here starts in the attractive region and as temperature

increases will probe smaller inter-atomic distances that are even more attractive. This leads

to Hager’s predictions becoming less and less blue shifted as temperature increases.
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(a)

(b)

Figure 4.8: (a) Potential energy differences for the D1 transition with (b) ground state

potential surface. Blank’s surfaces (- - -) and Hager’s surfaces (—)

A similar analysis of the potential differences is made for the D2 transition. The

analysis is complicated by the multiple surface that make up the shift, but a similar trend

can be seen. Using the same interaction regions being probed as the D1 line Hager’s
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(a)

(b)

Figure 4.9: Potential energy surfaces for D2 transition. Blank’s [15] surfaces are shown as

(- - -) with Berriche’s [13] surfaces used by Hager [34] shown as (—).

potentials show that as the temperature increases the difference potentials grow slightly

more repulsive which correlates to his predictions of a slightly increasing blue shift for the

D2 line as temperature increases. The same regions on Blank’s difference potentials show
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almost no change. There is an extremely small repulsive component visible that does grow

as temperature increases. This once again leads to a slight increase in the blue shift as a

function of temperature. For both the D1 and D2 lines the experimental data appears to split

the difference between Blank’s and Hager’s predictions.

Figure 4.10: Temperature dependence of the Rb-He broadening coefficient for the D1 line.

The current experimental data is shown as red circles with the other reported literature

shown as squares. Theoretical calculations from Blank(—), Hager(- - -), and Loper(–·–)

are also shown.

The broadening coefficients for the D1 and D2 transitions are shown in Figures 4.10

and 4.11 respectively. The experimental data for both transitions once again agree well with

literature at the lower temperatures. A few data points representing the same temperatures

can be seen. The spread in this values comes from a systematic error of day to day variations

in the laboratory. The D2 transition also shows a data point that varies greatly from the rest

of the run. This data point was determined to have a system failure during the testing, it

is still shown to indicate measurements were taken at that temperature. The broadening

coefficient increases slightly with temperature for both lines, as would be expected by just

85



Figure 4.11: Temperature dependence of the Rb-He broadening coefficient for the D2 line.

The current experimental data is shown as blue circles with the other reported literature

as diamonds. Theoretical calculations from Blank(—), Hager(- - -), Loper-Barringer

coupling(–·–), and Loper-Allard coupling(-·x) are also shown.

the simple view of the rate being given as:

γ(T ) = σ(T )v̄ (4.7)

where v̄ is the thermally averaged velocity. The current experiment gives a broadening

coefficient for the D1 line that varies from 17.8 MHz/Torr to 18.9 MHz/Torr and for the D2

line from 18.5 MHz/Torr to 20.5 MHz/Torr as temperature increases from 373 K to 723

K. While the previously reported values and the current experimental values agree well,

the theoretical predictions once again do not show good agreement. The same theoretical

predictions used for the shift are once again compared here for the broadening. In the

case of the broadening for the D1 line, the predictions made by Blank and Loper both

trend in the positive direction. Only the magnitude of the broadening is off, with Loper’s

predictions being lower yet closer in magnitude to the experimental data, and Blank’s

predictions being larger and further away in magnitude. The prediction from Hager has
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a much higher variation in magnitude than seen in either of the other two predictions or the

variation seen within the data. Hager’s predictions also show a trend that has the broadening

becoming less with temperature. This decreasing broadening does not match the data or

other predictions.

The D2 broadening coefficient shows similar trends to the D1 data. The theoretical

predictions for Blank and Loper follow closely with each other with both overestimating

the broadening coefficient as a function of temperature. Once again the predictions by

Hager show a decrease in the broadening, but have about the same amount of variation as

the other two theoretical curves over the temperature range.

4.4 Conclusions

A new experimental technique was developed to observe the shifting and broadening

coefficients at high temperatures. Using the new cell and procedures, the Rb-He shift and

broadening coefficients were observed for temperatures ranging from 373 K to 423 K,

hundreds of degrees higher than the previously reported values of 394 K [68] and 450

K [69]. The experiment shows that while there is a measurable change in the shift and

broadening coefficients as a function of temperature that those changes are small. These

small changes in shift and broadening rate could be important though in the modeling and

building of a DPAL. An analysis of the temperature distribution within a DPAL done by

Zhu et. al [87] demonstrates that even at moderate pump powers, 40 W, that the difference

in temperature between the center pumped area and the walls can be 300 K or greater.

A comparison of the data with previously measured values show a very good

agreement at the lower temperatures. The values agree for both the shift and the broadening

coefficients giving a high level of confidence in the current values. These values, along with

the previously reported values, were compared to three different theoretical calculations.

Two theoretical values were obtained using the same potential energy surfaces, but different

theories [15, 53]. The third theoretical value used a different potential, but the same theory
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as Blank. None of the theories are in good agreement with the experimental data, or with

each other. More work is necessary with the theories and the potential energy surfaces they

used to match the experimental data.
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V. Rb-He Temperature Dependent Spin-Orbit Rates

5.1 Introduction

The operation of the DPAL requires a mixing between the two upper excited states in

order to achieve lasing. Due to the lack of optical transitions allowed between the levels

a different method is required to move population. That method is spin-orbit mixing due

to added buffer gas that collisionaly relaxes or excites the Rb between the excited states.

The speed at which population is moved from the pumped 2P3/2 state to the upper lasing

2P1/2 state much be sufficiently high in order to avoid bottlenecking the system. The rate

at which the population moves is called the spin-orbit (SO) mixing or spin-orbit relaxation

rate. Studies done by Miller [56] and Hurd [38] demonstrated intensity scaling of the DPAL

systems where MW/cm2 pump intensities were achieved exciting more population into the

upper level than could be moved down with the SO rate present. This bottlenecked the

system leading to lower efficiencies. It was determined that at modest buffer gas pressures

the medium could only process approximately 50 photons/atom in a 2-8 ns time frame.

The spin-orbit mixing rate has been previously measured and reported in the literature.

Early work by Krause [45] and Beahn [9] give the rates as 1.03 × 10−17 cm2 at 340 K and

1.2 × 10−17 cm2 at 373 K respectively. The temperature dependence of the SO rates has

been explored as well. Gallagher [28] in 1966 looked at the temperature dependence of

the rates over a large temperature range, 300-900 K, but had large 15-25% errors. A more

recent study done by Sell [29] improved on the accuracy of these measurements, but only

covered a temperature range of about 303-423 K. Theoretical calculations of the predicted

SO rates have also been explored by Lewis [51].

Typical measurements of SO rates use either the CW or pulsed methods described in

the Background chapter. The benefits of each are a higher averaged power for the CW

method and a directly measured time basis for the pulsed. This experiment explores a
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hybrid method, dubbed quasi-CW, that is pulsed at such a rate that there are both CW

and pulsed features within the data. An exploration of this method has shown it to not be

advantageous as this time.

5.2 Experiment

The experimental setup for the side fluorescence measurements used in this

experiment are shown in Fig 5.1 below. A new, one of a kind, 200 pico-second 80 MHz rep

rate Titanium-Sapphire Spectra Physics Tsunami, optically pumped with a Spectra Physics

Millennia eV, was used to excited the Rb along both the D1 and D2 lines. The short 200

pico-second pulse used here allows for a mathematical simplification during pulse analysis

compared to a more standard 8 ns pulse because it can be modeled as an impulse function

compared to the 20-30 ns decay where as the longer pulse can not. Energy per pulse is

approximately 3 nJ with a spectral width of 1.5 GHz and a spot size radius of 2 mm.

Average output power is approximately 2.5 W with an intensity per pulse between 750 and

1000 W/cm2, well above the saturation intensity of the system. Rough tuning gives control

over output wavelength in 1.5 cm−1 range using a birefringent filter with fine wavelength

control coming from an electronically controlled Gires-Tournois Interferometer (GTI).

Laser wavelength was stable to within 0.01 wavenumbers with a drift of 0.1 wavenumbers

over a period of about an hour.

A ConOptics model 360-80 electro-optic modulator driven with a Model 25D driver

was placed into the beam path. The electro-optic modulator uses a non-linear potassium

dihydrogen phosphate (KD*P) crystal to direct light based upon polarization and drive

voltage. By modulating the signal to the crystal a polarized beam coming into the system

can either be allowed through or dumped out the side, this allows for a selection of pulses

let through the system. Input into the modulator had a polarization of greater than 1000:1

using a Glan-Laser calcite polarizer immediately before entrance aperture.
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The beam is sent through the specially designed alkali cell discussed in Section 4.2.1

where is excites the alkali. The only change that the cell has in this experiment from

the past is the side windows that were used either as a diagnostic check or covered and

now opened to allow for the detection of side fluorescence. On either side of the alkali

cell are photo multiplier tubes (PMT). On one side is a Burle C31034 PMT connected to

a Standford Research Systems Model PS325 power supply set at 1,700V. The other side

has a Hamamatsu R943-02 PMT connected to another PS325 power supply set at 2,000V.

Output from the PMTs terminated into a LeCroy Wavepro 7300 3 GHz oscilloscope. Time

bases is 50 ns/div with data being averaged over 5,000 sweeps. The Burle has a 1nm wide

band-pass filter center on the D2 (780nm) line with a similar filter center on the D1 (795nm)

line sitting in front of the Hamamatsu PMT. These filters in this arrangement allow for the

side fluorescence on either line to be measured simultaneously.

Figure 5.1: Setup for the Spin-Orbit (SO) relaxation rates experiment
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During testing the Rb containment cell would be filled with both alkali and helium.

The helium used was 99.9999% purity and was added into and removed out of the

system via the gas handling system after going through a SAES MC1-902F gas getter.

Vacuum pressures for the system could reach down to 11 µTorr with higher pressure ranges

reach approximately 750 Torr when helium was added to the system. Pressures were

monitored on the low end via an Agilent model FRG-700 manometer with a XGS-600

signal conditioner. The high end pressures were monitored using an MKS model 609A

1,000 Torr manometer connected to a model 670 signal conditioner.

To determine the wavelength of the pump sources a small portion of the beam was

split off the optical train using the front reflection of a fused silica window which was then

coupled into a fiber. The fiber terminated in a High-Finesse wavemeter to give the pump

wavelength. The pump wavelength has a spectral width of approximately 1.5 GHz and

appeared to be stable to approximately 0.01 wavenumber. The calibration of the wavemeter

was checked using a vacuum sealed Rb87 cell. Using this cell the laser could be swept

across the hyperfine lines of the un-broadened transition.

Throughout the experiment the 80 MHz pulsed laser could be used in one of two ways.

The first mode of operation consisted of using the laser in it’s pulsed form allowing every

pulse to go through the con-optics modulator. These pulses were stable to within 50 Hz of

the 80 MHz rep-rate, and were used to trigger the Oscilloscope signal. The second mode

of operation used the modulator described above in pulse picking mode where it would be

set to allow 1 pulse through and then dump the next 24 pulses.

5.2.1 Procedure.

The procedure for cell preparation did not vary with the pump source operating mode.

The cell is initially evacuated using the roughing pump to get down to the millitorr region.

Once there the turbo-pump is activated to bring the system further into the micro-torr

region. Once the cell has been evacuated the temperature of the cell is slowly raised.
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This allows for anything that may be left on the walls of the cell such as water vapor or

atmospheric gases to be desorbed and removed via the vacuum system. The heating for this

is provided by the BriskHeat BWH1010 heater tape wrapped around the cell controlled

with two Watlow PID temperature controllers and 2 K-type thermocouples. The alkali

pool temperature is kept separate from the rest of the cell and is not important during this

preparation step. Once the cell has reached between 698 K and 723 K it is allowed to stay

at this temperature for a few hours before being cooled back down to 373 K.

To fill the cell with alkali the cell was set at 373 K with the alkali pool set to 338 K.

The alkali pool was opened with the turbo pump on to remove any last traces of helium that

may have been in the cell. Once the pressure was back down to vacuum pressure (typically

after 10-15 seconds) the connection from the cell to the vacuum system is closed and the

alkali is allowed to fill the cell. The filling of the cell with alkali typically takes anywhere

from 60 to 90 min with the check being a visual inspection to see the fluorescences coming

off of the pumped area. At this point the cell is ready for the addition of helium gas. Gas

was added slowly, when required, at a rate of approximately 0.2 - 0.5 Torr per second at

the lower pressures, and at higher pressures up to 2 Torr per second.

5.3 Observed Fluorescence

The signal from the side fluorescence experiment varied depending on the mode of

operation of the laser. Without pulse picking the temporally resolved side fluorescence

from the parent 2P3/2 state (D2 line intensity) and from the satellite 2P1/2 (D1 line intensity)

is provided in Fig. 5.2 with the corresponding laser intensity being shown in Fig. 5.3. The

pump pulses are separated by 12.5 ns (80 MHz) and exhibit a variation in peak intensity

of 9%. Without any buffer gas within the system the natural decay time of the pumped D2

state is the inverse of the A coefficient at 3.61×107s−1 or about 27.7 ns. Without anything to

speed up the decay time, such as buffer gas, the excited Rb atoms do not have time to fully

decay away before the next pulse. The emission from the parent state is largely independent
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of pressure with an exponential decay following each excitation. Each decay exhibits three

oscillations, reflecting the pump pulse shape. A large jump from the low pressure signal to

the higher pressure signals is due to line shape effects where the un-broadened line at low

pressure is not large enough to match the pump. At the higher pressures the transition line

shape and the pump become closer matched.

The temporally resolved emission from the satellite 2P1/2 state is weaker and depends

strongly on on He pressure. One would expect a double exponential, rising and falling,

response to the short pulsed excitation, consistent with the more rounded oscillations seen

in Figure 5.2(b).

With pulse picking, the pump signal is shown in Fig 5.5. This partially suppressed

pump lead to the signal for the D1 and D2 transitions shown in Fig 5.4. Unfortunately,

the ConOptics pulse picker does not fully isolate subsequent pulses. The second pulse is

only attenuated to approximately 25% of the peak with the subsequent pulses down in the

10% range. Causes of this phenomenon may include crystal coating problems, incorrectly

matched impedances in the line, or unknown alignment issues. An attempt was made

to work with the manufacturer to solve the problems but time available became an issue.

While the temporal decay dynamics are enhanced with pulse picking, interpretation appears

complicated by the varying pulse attenuations.

The signals from the two operating mode are similar to each other, but very different in

the approach needed to understand them. While allowing all of the pulses through we see a

quasi-CW experiment with an oscillating decay feature indicative of a pulsed experiment.

The pulse-picked mode then shows a quasi-pulsed experiment where the non-suppressed

pulses show and offset and re-excitation features that are indicative of a CW experiment.

This hybrid pump approach was not intentional at the onset of the experiment, but became

the mode of operation due to problems with laser and pulse picker performance.
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Figure 5.2: Raw Experimental data for the D1 and D2 transitions while pumping along the

D2 line at 373 K. Pressures shown, from bottom to top, are 0 Torr, 5.2 Torr, 9.7 Torr, 14.8

Torr, 19.4 Torr, 30.5 Torr, 49.1 Torr, 75.1 Torr, 106.7 Torr, 287.4 Torr, 503.4 Torr, 730.4

Torr.
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Figure 5.3: Laser pump signal at 80 MHz with no pulse picking.

5.4 Analysis

5.4.1 Quasi-CW Pumping.

The analysis of the observed data differs depending on what mode the system was

being operated in. Without pulse picking enabled in the system the resulting data closely

resembles the expectations of a CW pumped experiment. One of the best executions of the

CW experiment was done by Pitz [64]. Solving the equations of state given in equation

2.6, we can get the steady state relative populations:[
N1

N2

]
PumpD2

=

(
ID1

ID2

) (
d2

d1

)
=

k12[M]
A1 + (k10 + k21)[M]

(5.1)

[
N2

N1

]
PumpD2

=

(
ID2

ID1

) (
d1

d2

)
=

k21[M]
A2 + (k20 + k12)[M]

(5.2)

With these two steady state equations it becomes possible to determine the spin orbit rates

via a ratio of the satellite to the parent. An attempt to do this was made for this data set.

The average value was determined of both the satellite and the parent in order to remove

the pulsing features. Those values were then ratioed against each other for a variety of He

pressures that ranged from 5 Torr up to 730 Torr to create a Stern-Volmer plot. In the above
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Figure 5.4: Raw Experimental data for the D1 and D2 transitions while pumping along the

D2 line with pulse picking. From bottom to top the pressures are 19.4 Torr, 49.5 Torr, and

242.7 Torr

equations there is a d2/d1 factor that is the relative detectivity of the system. A detectivity

ratio for our system was calculated to be approximately 27.8. The detectivity ratio was

calculated using the PMT response curve for either PMT at the set voltage and the another

response factor. To calculate the response factor the system was forced to obey detailed
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Figure 5.5: Laser Pump Signal at 80 MHz with pulse picking.

balance given by:
k21

k12
=
σ12

σ21
=

g2

g1
e∆E/kT (5.3)

Plugging into the detailed balance equation ∆E = 237.6 cm−1, g2=4, g1=2, and T = 373K

results in a ratio of 0.7998. Taking the inverse of this we can get the back rate is 1.25.

By forcing the fitting function given below to reach this ratio of 1.25 the detectivity was

determined. The results of this are shown in Fig. 5.6.

When fitting the data shown in Fig. 5.6 to the equation:

Y =
Ax

1 + Bx
(5.4)

where A = k12/A1 and B = k21/A1 from equation 5.2. The fits returned values of

8.644×10−19 for A and 6.886×10−19 for B. Using the value for A and the natural decay rate

of 3.61×107 sec for A1 we get that the cross section (σ) is equal to 2.17−16 cm2. This value

is more than an order of magnitude larger than those previously reported by Gallagher at

1.18 × 10−17 cm2 [28] and Sell at approximately 1.15 × 10−17cm2 [29]. The larger cross-

section value found here may indicate they system was trapped though trapping is unlikely
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Figure 5.6: Ratio of the D1 and D2 signals ( ID1
ID2

d2
d1

) including detector response while

pumping the D2 line at 373 K.

to cause this large of an error. Trapping occurs when the emitted light is reabsorbed before

making it to the edge of the cell. Due to time and equipment constraints an effort was made

to push on to explore the temperature dependence of these transitions, with the knowledge

that the absolute value of the rate is incorrect.

Assuming that the quasi-CW analysis above is valid, the temperature dependence was

explored. The system in the quasi-CW pumping configuration was used to pump the alkali

cell at 373 K with 17.4 Torr of helium added. This pressure was chosen as it fell in the

region of linear growth shown in Fig. 5.6. With the cell filled and sealed off from both the

alkali pool and the gas handling system the temperature was systematically increased by 50

K increments from 373 K up to 723 K. Following the same procedures as before the ratios

of the transitions were corrected for detectivity with the results shown in Fig. 5.7.

A few items to note here is the linear increase in the spin-orbit mixing rate over the

temperature range of 373 K to 523 K. Beyond that, at 573 K and 623 K the rate drops

quite significantly. During the experiment visual observation of the cell revealed that the
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Figure 5.7: Measured temperature dependent cross-section (*) while pumping the D2 line at

17.4 Torr for a variety of temperatures ranging from 373 K to 723 K. Previously measured

cross-sections from [28] shown as (—) with 15% error bounds represented by (- - -).

alkali density inside the cell had risen significantly. This observation was based upon the

reference cell no longer receiving the pump beam, and the amount of light emminating

from the cell. This indicates that there was alkali plated out somewhere inside the cell that

was released from the walls at higher temperatures. The signal can be seen returning at 673

K and 723 K with the same slope as the first temperature range. Visual inspections at this

point revealed that the pump beam was once again making it to the reference cell indicating

that as the temperature rose the alkali was reacting away within the cell.

A comparison to previous results indicates major systematic problems with the data

collection.

5.4.2 Pulse Picking.

While operating in the pulse picking mode analysis of the system follows the method

described earlier by used by Brown [21]. Using the equations derived earlier for a pulsed

experiment it can be shown that the the decay is an exponential decay on the parent
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(pumped) transition. The satellite transition (non-pumped) on the other hand will have

an exponential increase in amplitude followed by an exponential decay. This feature can be

fit using a double exponential. What we see during this type of analysis is that the parent

transition has a very rapid rise while the satellite has a slow rise due to population being

moved slowly from the parent to the satellite. As more and more buffer gas is added these

rises and decays happen more rapidly.

The data shows for our experiment that there is a rapid increase in the signal for the

parent transition. This is then followed by the exponential decay that is expected from a

pulsed experiment. Before the decay can get back to zero though another pulse comes in

to re-excite more of the Rb. An attempt to fit to the overall decay feature does not work

as the overall decay due to the extra pulses extends out well beyond the rate at which

individual pulses decay away. Attempting to fit to individual pulse decays is not effective

either. Since the next pulse comes in before the previous pulse has had a chance to decay

away exponential fits to the individual pulses also do not give a reasonable answer. This

mode of operation does not conform to the pure pulsed analytic solution.

5.5 Conclusions

The best estimate for the spin-orbit mixing rate from the available data is 3.12× 10−11

cm3/s. From the given rate a cross-section of 2.17 × 10−16 cm2 was observed. This is

a factor of 15 larger than previously reported results by Gallagher [28]. The temperature

dependence of the rate also shows a much larger increase in magnitude over the temperature

range when compared with previous observations. This larger observed cross-section and

the lack of repeatability calls into question the validity of the collected data.

The hybrid CW pulsed pumping of the experiment, while not intentionally set out for,

did provide some interesting results that required a different type of thinking to interpret.

Using the quasi-CW pulsing and a CW type analysis we were able to extract values that

are close to those provided in literature from previous experiments. Unfortunately due to

101



equipment problems and with the analysis able to be carried out up to this point these values

do not add anything new to the body of scientific work. Also, variations within the data

sets themselves also point to some parameter within the system not being understood and

controlled as well as assumed.

Due to the hybrid nature of our pumping and the difficulties analyzing the data that

does not fall squarely into either of the well known and well studies regimes. In order

to extract usable values a full model will need to be developed that take into account the

varying pulse amplitudes and repetition rate. Due to the complications with extracting

values from the hybrid pump method measurements done in a pure CW or a pure pulsed

environment would be the preferable method for this type of experiment. The alkali

cell being used has been shown in other experiments to be sufficient for determining the

temperature dependence of various parameters assuming the pumping works. Recommend

that in the future, a diagnostic setup is added into the system for detection of alkali density

is present in the system, as well as either a full CW or pulsed system that will allow for

relaxation before the next pulse hits.
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VI. Conclusions

6.1 Work Summary

This work has explored the high-pressure Rb-He line shape parameters to include

broadening, γ, shifting, δ, asymmetry, β0, and secondary blue peak location. The measured

broadening rates for 4He D1 and D2 lines are 16.1 ± 0.2 MHz/Torr and 17.0 ± 0.3 MHz/Torr

respectively. The rates for 3He D1 and D2 are 16.8 ± 0.5 MHz/Torr and 19.4 ± 0.4

MHz/Torr. Similarly the shift rates for 4He are 4.60 ± 0.12 MHz/Torr and 0.20 ± 0.14

MHz/Torr with 3He 5.65 ± 0.35 MHz/Torr and 0.65 ± 0.2 MHz/Torr. The broadening

and shift rates measured aren’t new values, but are used as validation against previous

measurements and show that the linearity of the rates extends out to 15,000 Torr. The

measured location of the secondary blue peak location is a previously unreported value

with the location of 735 nm. The asymmetry of the line shape measured at high pressures

gave a shading to the blue of 0.51 ± 0.04 MHz/Torr and 0.24 ± 0.02 MHz/Torr for the D1

and D2 of 4He lines respectively. The 3He values for the D1 and D2 lines are given as 0.43

± 0.01 MHz/Torr and 0.30 ± 0.03 MHz/Torr respectively.

The temperature dependence of the shift and broadening rates was also determined

over a temperature range of 373 K to 723 K. The previous trusted results covered a much

small range of 353 K to 394 K. These increased temperatures represent information not

currently in the literature. This increased temperature range also allows for the comparison

to various theoretical predictions over a much greater temperature range. The shift

coefficient ranges from 4.36 MHz/Torr to 5.35 MHz/Torr for the D1 line and a much smaller

observed shift of .42 MHz/Torr to .99 MHz/Torr over the temperature ranges. Broadening

coefficients range from 17.8 MHz/Torr to 18.9 MHz/Torr for the D1 transition and 18.5

MHz/Torr to 20.5 MHz/Torr for the D2 transition.
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The measured spin-orbit rate at 373 K was observed to be 2.17 × 10−16 cm2. This

rate is approximately 15 times higher than previously reported values. The temperature

dependence of the rate at low pressure was also shown to vary with temperature three

times more than the best literature observations. The exceedingly large spin-orbit rates

coupled with the rapidly varying temperature dependence of the rates show there were

large systematic errors within the experiment.

In order to measure these values at increased temperatures a new alkali containment

cell was needed. Throughout this research effort a two temperature alkali cell was

developed and built. Though the new cell allowed for temperature measurements at

previously unreached temperatures the use of the cell was very procedurally intensive. The

procedures for using the cell were developed through trial and error, but are now at the level

necessary for continued experimentation.

6.2 DPAL Impact

This research will have several important impacts on the scientific community’s

understanding of the DPAL system. The scientific foundation of the DPAL system is the

interaction between the alkali and the buffer gas used. These interactions are modeled by

the potential energy surfaces that can then be used by various theoretical models to predict

parameters such as line shape and mixing rates. Currently those potential energy surfaces

are incomplete in their level of refinement.

The core line shape measurements made for the temperature dependence of the

shift and broadening are very sensitive to the long range potentials. The short range

potentials then greatly effect the wings of the line shape determined by the high pressure

measurements made. These line shape parameters can be used to empirically modify the

potential energy surfaces. Then using the new surfaces a check on their validity is to predict

the temperature dependence of the spin-orbit mixing rate.
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On the engineering side these measurements will be useful in scaling the DPAL to

high powers. As discussed earlier in order to make a DPAL work the excited atoms must

transition from the upper excited state to the lower state before the system can lase. If

this rate is not fast enough the system bottlenecks and efficiency drops. A simple view

of the solution is to just add more buffer gas to increase the rate. This will have other

consequences within the system though. As stated earlier the temperature changes within

the system can be up to 300 K over just a few cm of length. With a temperature gradient

this large the mixing rate can vary throughout the system where there may be bottlenecking

in some spots while not in others. By increasing the pressure one could increase the mixing

rate so that the slowest rate is sufficient to prevent bottlenecking.

Increasing the pressure in the system amplifies the effects of the temperature

dependence of the broadening and shifting rates. In order to get the most out of the DPAL

system temperature variations within the system need to be accounted for and corrected to

maximize laser efficiency, power output, and beam quality.

6.3 Recommendation for future work

The first recommendation for future work is a complete measurement of the spin-orbit

mixing rates. To do this work the current alkali cell should be used as it has been proven

to work well over the temperature ranges up to 450oC. A change to the experimental setup

would be the addition of a laser diagnostic to measure the amount of alkali vapor in the

cell. After that either a pure CW or pure pulsed method should be employed. The hybrid

quasi-CW pumping method used while interesting did not provide the results needed.

The temperature ranges, while greater than previous results, could be increased. An

increase in the upper range of the temperature could be accomplished using the same

techniques used here, but would required different materials. Ceramic heaters and different

cell materials could be used to reach in the 2,000 - 3,000 K range. To get an increase in

the lower end temperatures would require a completely different approach. To get very low
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temperatures an alkali vapor would need to be made, and then cooled without condensing

out the alkali. One possible method would be to flow the system through a supersonic

nozzle where the corresponding decrease in pressure would also drop the temperatures

below what would be possible with a standard setup.

Due to the success of these measurements a strong recommendation would be to revisit

these same experiments with no modification in order to procure the results for the other

alkali and noble gas interactions. This would have the two-fold benefit of expanding the

kinetics database and provide the theorists with more data to compare their models to.

With the Rb-He being one of the simplest interactions due to the nature of helium being

the smallest and lightest it is most likely to be closest to correct. The other noble gases

represent a more challenging case to match and will give more confidence in the correctness

of the surfaces.

As was determined during comparison to theoretical predictions, the various models

and surfaces are not yet correct. It appears that some modification of the current potential

surfaces could result in results close to those obtained experimentally. The theory also

postulates as difference in the emission and absorption spectra that has not been explored.

An emission measurement that encompasses the wings of the line shape would be useful in

confirming or disproving the difference in emission and absorption. Possibly a CW pumped

excitation experiment with a scanning monochromator viewing the side fluorescence could

be used.
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Appendix: Conversion Factors

A.1 Shift and Broadening Unit Conversions

Shift and broadening rates are reported in a variety of ways through the literature.

In order to facilitate an apples to apples type comparison each of the reported values were

converted to MHz/Torr, which is the standard this group uses while reporting results. Below

are the four other units along with how they are converted into MHz/Torr. The final equation

of each section gives a single number and temperature variable that can be directly applied

as the conversion factor.

The first reported units are in wavenumbers per concentration.(
cm−1

cm−3

)
⇒

(MHz
Torr

)
Wavenumbers are converted to frequency using the speed of light (c). The ideal gas law is

used to relate number density (n) to pressure.(
cm−1

cm−3

) (
c

kBT

)
=

(MHz
Torr

)
(
cm−1

cm−3

) (
2.9979x104 cm MHz

1.38064x10−23 (Pa m3 K−1)T

) (
133.322Pa

Torr

) (
1m

100cm

)3

=

(MHz
Torr

)
(
cm−1

cm−3

) (
2.89493x1023

T

)
=

(MHz
Torr

)
(A.1)

To convert to MHz/Torr take the reported value, multiply by the given conversion factor

and divide by the temperature in Kelvin.

Another set of reporting units is wavenumbers per relative density (r.d.)(
cm−1

r.d.

)
⇒

(MHz
Torr

)
where r.d. is the relative density compared to an ideal gas at 760 Torr at 273.15 K which

has 2.69×1019 cm−3. Wavenumbers are converted to frequency using the speed of light (c).(
cm−1

r.d.

) (
c

kBT

)
=

(MHz
Torr

)
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(
cm−1

r.d.

) (
10761.8

T

)
=

(MHz
Torr

)
(A.2)

To convert to MHz/Torr take the reported value, multiply by the given conversion factor

and divide by the temperature in Kelvin.

Some reported values for the broadening and shifting us frequency per concentration.( Hz
cm−3

)
⇒

(MHz
Torr

)
The concentration is converted to a pressure using the ideal gas law.( Hz

cm−3

) ( 1
kBT

)
=

(MHz
Torr

)
( Hz
cm−3

) ( 133.322Pa/Torr
1.38064x10−23 (Pa m3 K−1)T

) (
1MHz

1x106Hz

) (
1m

100cm

)3

=

(MHz
Torr

)
( Hz
cm−3

) (9.65654x1012

T

)
=

(MHz
Torr

)
(A.3)

To convert to MHz/Torr take the reported value, multiply by the given conversion factor

and divide by the temperature in Kelvin.

The last units that shift and broadening are reported in is frequency per amagat.(
GHz
amg

)
⇒

(MHz
Torr

)
An amagat (η) is defined as the number density of an ideal gas at 101.325 kPa (760 Torr)

at 273.15 K

η =

(
p
p0

) (T0

T

)
The conversion from amagat to pressure requires the given T0 temperature of 273.15 K and

the pressure of 760 Torr as shown below.(
GHz
amg

) (
273.15K

T

) (
1

760Torr

) (
1x103MHz

1GHz

)
=

(MHz
Torr

)
(
GHz
amg

) (
359.211

T

)
=

(MHz
Torr

)
(A.4)

To convert to MHz/Torr take the reported value, multiply by the given conversion factor

and divide by the temperature in Kelvin.
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A.2 Asymmetry Parameter Comparison

S (ν) =
A [1 + 0.664 2π Td(ν − νc)]

(ν − νc)2 + (γ/2)2 (A.5)

I(ν) = 2
( c
w

)
e−nα0cos(nβ0)

nα1

(nα1)2 + (2πcν/w − nβ1)2 +

2
( c
w

)
e−nα0 sin(nβ0)

nα1(2πcν/w − nβ1)
(nα1)2 + (2πcν/w − nβ1)2

(A.6)

Equation A.5 has the asymmetry parameter given as Td which needs to be compared to our

asymmetry parameter given as nβ0. In order to compare the equations the first step is to use

the small angle approximation for cos and sin for Equation A.6 to get:

2
( c
w

)
e−nα0

[
1 + nβ0(2πcν/w − nβ1)

]
(nα1)2 + (2πcν/w − nβ1)2 (A.7)

Now that Equations A.5 and A.7 and in the same format we can see that:

A = 2
( c
w

)
e−nα0nα1

(ν − νc) = (2πcν/w − nβ1)

(γ/2) = (nα1)

and most importantly allows the comparison of the two asymmetry parameters by:

nβ0 = (0.664)(2π)Td (A.8)
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